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page 37

proof of lemma 35
rroof is false. Thse following proves the lenma.
Assume there exlsts an ideal A for which the theorem
15 false. Let ¥ de the set of ideals for which the
theorem ig false. M is not empty. BY the foethe-
rian property, i nas a maximal elewent, £ay E.

E ic not prime. Let B ==(d&i .- s ); let

6 yeE, vt [ f L VEE e

F = <O('\\.r‘)o(s)@>
6= ( iy ove, Fo YY)

f:yﬁ &} 3 so there exist Pl’ o ooy Pn such that TQT%E;Fi

F e

A

page 47

for all i; also there exist Qps so» O such that
R SG, G &Q; for all J. Then
T PG c FGCE S F &Py
' ‘: ’ C?C-
for all 1. Thus the theoren actually does hold

for E.

ged

lemma 47

The theoream is false Dy exsuiple: Let K = %,
I — - - N 2 LT - .
LK = T.-oonen f(x! = x" -+ 1 & Z[}: % =1 ig a rootb

of T{x), =and £(x)/(x -~ L)y =x+ = %;ﬁ&d .

However, the following .emws <o true: If

<

?CX) = cSm XM+ . ,,’1”5\')(*0(

has algevraic integers ( not necessarily in any finite



- YL -

extension of Q) for coefficients, anc T 1ls one of
1te roobts, then every coefficlent of £(x)/(x -7
has algebraid integers for coefficients. The proof
goes through the same Way. gimilar changes in the
corollary and in the following two lemmas are also
required.

But, as noted adove, these three lemmas are
unnecessary €O the'prdof of lemma 50, and so may be

deleted from the paper anyway.



This paver sets out Lo prove
that there
ideals

extension of the rational numbers.

Y

is unique factorigzation

in the ring of algebraic integers in a

theorem, due to Dedekind,

(UF) by prime ideals of

}
&
]
Q.

This will be proven

in spite of the fact that there is gensrally

&

(@]

Tr for
elements

The first chapter outlines the problem more expllcit-

4

ly. fThere are three conditions that the ring must be shown

to satisfy in order to prove the theorem. These will be
taken up in each of the next three chapters. The fifth

chapter-tidies Up s Uow nors pral

e
PRSI AR U o

shows a proof of the theorem. The :aosixth shows some

unexpected applications.

Throughout, the following symbols will be used: ¢ for

the field of rational numbers, Z for the ordinary integers,

or rational integers as they will always be called in the
~

sequel, ¥ for the real numbers, ¢ the complex numbers, K
for eny finite field extension of ¢, and Zp (e be defived
&a(@w)gs. "Elements of ¥ will be called aslgebraic numbers.

Assume throughout that every ring is an integral domain.

e

Consider the field ¥ and any finite field extension K.

4 (5/m), wrere

R ~ N s ) (B -
Fields such as @(1), ¥E5 ), or more generally
m€ Y satisfy thls condition.

Notation:

s ol -

Lesignate the degree n of a fleld K over & by

that K : %]=rl if and only if K=¢. Suppose that

v
70(‘3.

and letke€K. Form the set {l)OQ,d‘, . s




The set is linearly dependent over ¢ since 1t contailns
n + 1 elements. Thus: there exist in ¥ elements By eves

25 not all=0, such that

: W) N
Q,+ a,s + ... FOu & ek = O,

Ir &y, is the coefficient of the highest power of < that has

a non-zero coefficient, civide the equation through by &y
to get a monlic polynomials
g | V"

bo +b, & + ... +bey X +aT=0

r
l.e. o satisfies some monic polynomial in %[k] of degreeﬂé:n.

PEERESNEEU MY

x 4] e AIXT, also, (1°- 1) savisfles X — 2X + L.

Example: if K =¢(i) and &=1, since YK : %]:?2, i satisfies

Lefine Zy = &xe}<}d is the root of a monlc polyno-
mial in Z[x] } Thus £ €Zgci) , but ki is not. Xote that

- C Wt D T A T e
.,C Ko SR & B ST S 45 B R A 8 S LAY}

Z < Zy and Zy R AR TR AR NP

e b

We have now:

K‘
)
.7
where 7 1s a subring of ¥, ¥ a sudbfleld of K, and Z a = ring
'n ZK’
ow let X = (¥-5). All elements in K are of the form
a + bV=5 , a,p€¢. It can be shownithat Z,. = Z{V—SZ . Thus

“K
for instance, 9 = (9 + 0VL5)E Ly Note however that
. X > '

1= 3‘3=:(1ﬁ.v:?)*(a-wﬁ?>.

It can also be showﬁzthat 3, (2 ++¥-5), and (2 -V-5) are

all prime elements of ZQQng) and not associated. Thus




—. is not a UF cdomain (UFD}; this 1s the case for Z.
. «c cordive To Hhe Theoram ) -
in general. However,tnere 1s a certain kinc¢ of UF that
holds not fer the elements, but for the ideals of ZK; i.e.
given an ideal A of ZK’ there exist a finite set of prime
ldeals Py, Pg’ ceey P of Zx such that A ==Pl oo Pn H
moreover, this factorization is unique except for order.
Throughout this paper, it is enlightening to keep in

mind the following example: It can be shown that any ex-

¢
tension of degree 2 over ¥ is of the form
@ ()

where m 1s any sguare-=fres (1.6« having no squared factor),
positive or negative, rational integer. Then, provided

m= 2 mod4, or m= 3 mod4, Z _is of the form:
K .
;f [ ]
4

For instance if K= g(VZ), then Z, = Z[w’é’], If =2+ VX € K

then < satisfies

f(x) = X' —Hx +A =0

For reference later in the paper, it should be noticed that
the follcwing are all the roots of f(x): 2 2, 2 -V 2.

Also the product of the two roots is (2+¥2)(2 -V2) = 2.

1T
The first task, before talking about ideals in ZK’ is to
show that ZK is in fact a ring. From this 1% will be dis-
covered that ZK_is a finitely generated module over Z which

will give (1) that ZK is Noetrerian, ..~ no . 0o Lol




£lso it will be shown that (2) prime ideals in Z, are caximal,

and that (3) ZY is integrally closed (to be defined below)
b

in its quotient or fraction field. The theorem will then
give the desired result. The demonstration that ZK gatis-

fies the three conditions will go in the order (3), (), (2.

2]

, R& 8. Then © € S 1s saild

 id

Definition: Let ®,S be ring
t

]

to be integral over {47 © sa

¢

isfies a polynomial equation

N1 VY
Q, + X ... T X + X0 =0,

where a, & R; © need not te in ®; if X is a fleld, then ©
1s algebraic over M.

Thus for all® & X, o is slgebraic over ¢. Slnce this
is true, K is sald to be algebraic over W.

If &¢K, it may satisfy more than one monic polynomial

over . In this case, choose one, say p(x), of lowest de

ge

ree.

Lefinition: p(x) so chosen 1s callec & minimel polynomial

for over #. p(x) 1s clearly irreducible, for otherwise

&« would satisfy a polynomial of lower degree.

Lemma |: iIf & € X, tren % has a unique minlmal polynomiel
of
OVEY W
be

-

Proof: Lebt p(x) be a minimel polynomial and s(x

~—

Lany other
polynomial satisfied by o, Since the polyncmiel ring %[&}
is Euclidean, there exist polynomials q(x), r(x) in ¢ Ix|
heving the properties

S(X> = Ci(X)‘ P(X) + T(X)

wnere deg r(x) < deg p(x), or r(x) = 0.



So
_S(OS) _ LZ(O.\). pl(x) + r(d)
o = <z(o\)'0+ (%) | ‘
0o = r(4a)
whence o satisfies r(x). But deg r(x)y< deg p(x) then ccntra-

dicts the minimality of the degree of p(x); thile: leaves
only the possibility that r(x) = 0, and s{x) = g(x)ep(x).
So p(x)ls(x)°

sut if s(x) 1s another minimal polynomial for & over «,
the same argument gives s(x)|p{x). Thus s(x)= 2 p(x). But

since both are monic, s(x) = p(x).
ged

Corollary : The minimal polynomial of & aivides any poly-
nomial in %{k}that « satisfies.

Lemma Z: If ©(x) and g(x) are relatively prime in « Ix]

they have no roots in conmon.
proof: If f(x), g(x) are relatively prime In # {x], then

there exist s(x), t(x) such that
$x) sCx) 9O LG = |

if K is a common root, thea O = 1.
ged

Definition: An algebraic number is an slpebraic integer 1if

its minimal polynomial over ¥ has coefficients only in Z.
The term"algebraic integer" will occasionally be abbreviated
to "integer".

Lefinition: A polynomial in Z[x] is primitive If 1ts coel-




ficlents are relatively prime; l.e. the
factor of all of them is 1.

Lerma $: (Causs! Lemma) The product of
is primitive.

Proof: Let ‘a; +a, X +...7auXY  and
be primitive, and suppose thelr product

S;&']‘J?_SL’ . . . . . 4
<pAPtne product is not primitive. Then

highest comumon

primitive polynomials

b, 2 b, X ...+ b XT

[

is C,+ ¢, X +,,,+<‘kxk

some prime p dlvides

every coefficient-of c¢(x). Let a, and bj be the first coefl-

i

flcilents in the two original poliynomials that p does not

divide (tHEy must exist, since Dboth polynomials

Then by the formula for the product of two polynomlals,

) o o \ .
C"‘*J' = (QO b_('.y:} S MU & G bi*’/ + & bJ

But p divides Qoyorny Bicy, ba).,

T

4 M S P
G bj) is civistole by p.

b =i

+ (Q,{wl b\,’—l + ... +Q‘A'7J

and C17j>so

But p prime implies that plai‘or p\bj, contradicting

. K
the choice of &, and bj“ Thus: ¢, + C; X * .- 7 Cx X

has no common factor p for its coefficients, and is primitive.

jO)
N

Lerm

L) = Ce -0

ged

Any f(x):;éO € ¢ [x]can be written uniquely as

where £*(x) is primitive in Zix]and €5 >0 < R

/
N .
Proof: Say ;‘?(2{)2 ay X T ...t XFQ,, a,; e @. Each

a, can be written (bi‘c), where ¢ 1s the least positive
1 }

common multiple of alk denominators of the fractlions

as3 by, ¢ € 7+ Then

2
i

N

con= (b x e L rbx b

are primitive).

i

Clx

© )



low factor out of the expression in parentheses the largest

posltive common factor b of all the by:

co) = 2 (b/xY F .. B X b .

R : - ’ a LR .
Let —%~::cfg‘ (bN/)(N +oa e *‘L% AT bo )“”€1(5)f;Clearly
Ch > Oj;\f*(x) is primitive by construction.

For unigueness, if f(x) = cf"fw(x) = ce+p(x) where

Qf,c'>-0y and £¥(x), p(x) are primitive, then f*(x){p(x)

K2
%

and p(x)|f (x), =o £¥(x)1 = %p(x); the —+slgn must prevall
since both Cp and ¢ are positive.

| aged
Temma 2 If « € K satisfles some monlc polynomial f(x)
with coefficients in Z (i.e. if & € 2¢), then the minimal
polynomial of & has coefficients only in Z (i.s. & is an
algebraic integer).

proof: Let p(x) be the minimal polynomial of & over .

Eyzgorollary to lemma |, f£(x)=a(x)-p(x), where q(x)f&l&<]

Thus by lemma *:
% - . P R X
o FTCx) = Cor €y m PROO - (A,

3% 3 - 3 s . K4
where £ (x), p (x), and g (x) are primitive. Thus by lemma &,

c¥(x)*q”(x) is primitive, and lemma & glves FR(xY= pT{x) g (x).

30

§x) = G FTX) = Gy p*(x) g™ (x).

Since f(x) is monic, and thus primitlive, cf:= 1

.
.

s = RO O,




p%(x) and q%(x) have coefficients in Z and must thus be monic
AN since theilr product f(x) is monic. But p(x) is also monlc.
p*(x) monic and p(x) monic give cp = 1, =and p(x) = p*(x) has
_coefficients in Z.
ged

Thus if « € ZK’ > is an algebraic integer; conversely

L4

every algebraic integer O &K is in ZK’ and ZK is exactly

tne set of all algebralc integers in XK.

Lemma & : Tﬁe roots of an irrecducible polynomial of degree n

over { are cdistinct. -

Proof: Let p(x) be the irreducible polynomiél. It is Well--’zmown‘h"L

that p(x) splits over £; i.s. that

P(x) = a, (x-T) ... (X=Tw)

is a UF of p(x), where the T, are in ¢. So p(x) has p roots
and at most h distinct roots.

Suppose that two of thean are the same; l.e.

Plx) = a, (x—a )"+ q(X)

Take the derivative of both sides (derivative 1s defined

as usual for polynomials in ¢ [x][).

Pfx):: Qa, (X—%) ,3(x)+-ao(x—q)l 31CX).

Notice that o is thus also a root of p'ix). By woral.w
lemua 2 , p{x) and p'(x}) have & common factor. Since p(x)

is irreducible, it must be the common factor: p(x)ipt(x).

But this is impossible since p!'(x) is of lower degree than p(x).
Therefore, p(x) must have distinct roots. |

ged



RN

Lefinition: Suppocse © € X, and p(x) is its minimal polyno-

mial overy, say of degree m. Then 9 is said to be of degree

wm over o The distinct roots (in £) &, ..., ©_ of p(x)

m
where © = ©, are called the distinct conjugates of & over <.

Definition: & polynomial g(%i, ---Ax) in ¢ [x]is symmetric

if it is unchanged by any of the pl permutations of the

Ixample: for p = 3, the polynomials o, +&a + %3 and & R T Ty + A3,
are symmetric.

Suppose that x is another variable, and

FX) = (K=t ) o «-/X‘“‘O(N)-': X:" Gy XN—) ... (= I)NG—N.

Thien

B‘;:' 0\1*—0(1_%&“_%_0{,\/

q—:;\ = O<l qL + PR + O('l D(/'\/ e (7\3\ d? ‘}_ A ‘f"Oﬂ,\O\'N + "f'o(/v-z O&N

¢ e o

@}:sum.@f all products of 1 different dj

o
“
o
U’N: O<IO<L“"’ c{/\_/c

(This can be seen conceptually by arranging the factors

vertically with the x's in one column, and the & in the other

(X=o,)
( Xx— A=a)
( x- c‘s)

¢ X
\ 3

-4

(X An),




and noting that ths product f(x) is the sum of all products

cf n elements, one taken Trom the palr in each row in the
o # ;

arrangemrent. There are 2 such products.)

Definition:

The above T are called the elemerntary symuetric

functions in o,, - - .,

&

N

{5

The following lemmz is assumed without proof. It is a
standard theorem on symustric polynomials, and can be found
. - 5
in many sources. -

Lerma Y7 Lvery syummetric polynomial in Xy, eeey Xﬂ over
can be written as a polynomial over ¢ in the elementsry
functions Ui, .-y Tn. If the coeflficlents of the first poly-
nomlal ere rational integers, so are the coefficients of tre
second. |

qed

Example: for p= 3,

XU X xS

= (RF A+ X)) =200 K, X X, + X3 X))

a

-

Lemma ¥: Let £(x) ey [x]be of degree m with roots r,, ..., Ty

-

Let p(xl, 0oy xm)Gi%[x]be a symnetric polynomial. Then
p(ry, o, a4>éyéo
sroof: By lemma 7, pxy, oo, xm) ie a polynomial over ¥

in @7, .., T, Thus p(rl, eee, Ty) 1s a polynomial over ¢

j_n (1"1“;" ...-_#I’ﬂ»), (I‘lr2 + rlra T v e +rﬂ—lrﬂ)’ o0y (1"13:“2 -ool"m‘)c

Write £(x) as

£(x) = Cu X" 4 Cpa X'+ ..+ X + 6

V-1 -
: CN (‘XN& bi\/'—J X + b/\/";\ /\ e ¢ i bo))



80
_ oon- h- X , :
Q_Y_Q(X) = Xd-]0n—1X '+L‘n~1)< - . .. L (00
But (rl~+...—%rn), (rirodryrgdeee Fr, 47 ) oo,
(rl PN rn) “are the unsigned coefficients bi of féx),

since r, are the roots of £é§l; thus bié=%. Thus
3 y
n
p(rl, aoo, rn)eg{' ‘1@4

52 ;
2x = 7x+7, and p(xl,xg}

i

Example: «Consider, '(x)

x12 + X920 The roots of f(x) are (7 ¥ 1 7)/4 and

N . A
= > 4 T ; ('7 - A\F7'>

2|
- e

.

as predictsd,



Lemna : LJ Cﬁﬁoldq “on ﬁ)ana M is & finite K-module,

then ACC holus on every sub-moduls N of X

=
]

Equivalent statement of lsmma 9 : If every 1ldeal of K has

& finlte basis, and M is & finitely-genersted R-module, then
every sub-module N of ¥ 1s a finltely-generated K-module.
Proof: (analogous to proof of Hilbert basis theorem) Let

i :_(al, .o oy ak)a Every element of N may be written iIn the
. d

¥ = a4, ¥ « +0t nln

where r, ¢ Re In this expression, if the last h — p coeffi-

cients are =0, the expression is sald to be of length £ p.

b

raaad v . . - o =l @
pression ‘lal~¥...-+rhah of length =p in N}. Show Ap is an

Iet A = gz‘ eRir 1s the coefficient of a in an ex-
Y b P

ideal in R. Say s E_ el 3 l.e. there exist
p’ P P
A= SQp F ..o+ S

6 = Xk, a ~{-,.c‘f‘)trgc‘-f

(=
H
»

-

€

Then A= G ::(sl— tl}alﬁ1¢.+(sp - tp)ap is an expression

D

-

of length< p in N; so s 5 EApa For all y eR,

=(ysda, + . ..+ {ySp)ap

e
3]

e an expression of length £p in l; so yspG=Apo Note that
O¢hA . Thus A 1is an ideal in R.
p p
& i i N e oo i ° X b N i
Ap hes a finite basls (bpl’ s Dpsp) Every pi 1%

the ptn coefficient of some expresslon ... "t ... v u Of

length £ p in N. Call it

Bpi:: I‘<pi‘)al+ 0.§+ P(Y i)ap__l + bpiapo

t,



Show that the totality of 211 B where 1Ep<h, 1£1<¢
generate the sub-module N of M,
4 y Fa S b - =
Every element ¢ of length €p can ve transformed to an

s ¢ . N . .
expression ¢ of length €p - 1, by subtracting a linear com=-

[

bination of the B determined as follows: if ¥=r_a. + .c. tr_a
pl 171 PP

then r 1is in Ap, and thus can be represented as a certain
P

linear combination of the b_,, say
pi’

= 1 +°°°+~ °
I'p ‘dpl(opl) Gpsp(bpsb)

Then S= XC‘QF‘BW -r"“'—JWPBFvis an expression of length

<5 - 1. It is clear thnat if & can be represented as a linear
combination of the Bpi” then so can § . Thus induction on

p can be invokedy noting that any expression of length=0
(there is only one; it i1z O) can be expressed as a linear

combination of the B Thus N is generated by the Bpi'

pi®

ged
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iy’ 2 y = : 4 S
Temma (@ ¢ TIf ACC holds for iceals of a ring B £5,

S & ring,
eS h
then @ﬁ}s integral over R if and only if all powers 8 of ©
belong to a finitely generated R-module (aly ces, & ) in S;
m

1.8 for all h

ri € R such that
4

beet me~1
@ -+ :.QN 1@ +s ¢ @
Lle™
M = it
© + ﬂl"““lw °
Y ~n
for some me. Thusg &

© can be represented as a linesr

-

fee. 9 €(1, ©, oes, ® ), for

h . \
"= b.a, * ... *Dh_z
171 m m’
a3 & b. e R«
aibs, 1 1
Proof: Say © is integral over R. Then there are e lements

angd consequently all higher powers of

-1
combination of gi, ©, aeey o ’f

all h.



h .
Conversely, say © €& (al, cee, am) € s for all h.

since ACC holcée for 1desls of K

éy /é_}«a;m,;x. 6; .
of (319 cee, am)A Thus the chain of modules

, ACC hnolds for sub-modules

: 2 .
(1,6) & (1,0,87)C ..o
ot % e i e e . . . h
must contain non-distinct modules; 1.e. there 1s a power ©
of © such that

~ h~i
6L] :th_le I~}—

reyh ah-t .
@"‘Vk,]@ wa:o‘—'rle*—rb:o

so 9 1is integral over K.
ged

: ZK is a subring of K.

Proof: It suffices to show that if %8 €Zg then o€, *+@,

aA-@ & Lx Since ACC holds in Z the preceding lemma applies,
letting K= Z and S =K. 7 . e oaulse Do oopirn oo by
Sy ey Ty, tooloooue DL ;'4: cee 2t Thus 10 «,8 ey

dh & (am"")an) = A

}

g e (\ol,.».f)\ak)‘:[’)

) b N b . - . .
for all powers « and f'of & and § , for some a;, b, ¢K.
(>
Are 211 powers of o, %+, 4~ in some finitely generatcd

Z-module? If so the lemma is proved. LeT

*

1'*,/1 = (a1b19 e v g aibj’ LEC LI anbk)’
(

for 2l 1, j

i, 1 is merely the product of the above two

. L I .
modules). Thus all powers (q@)“ = o @ 0¥ A @ are

in M, a finitely generated Z-module. Therefore A@ 1s in-

(@]

tegral, if.e. in Z,, by the preceding leua.



= A+ B+ M,

£
Then, in ,(OVi@>k3 dh e n o, Q“e 85

/

=

) W
and 211 the middle terms sre in ¥; thus (‘*i@> e L a finitely

generated Z-module. (A= {3> €ZK ana Z  is

X
Lerma J7: Z = Zy N &, ' ST
L <

3

.“.‘,:; " >
brgof :” Certainly Z Q;ZK(W Qo G, o€ Zy A= o
vhere p,q € Z, and p and q are relatively prime; then Ior
aieZ
>
fo " Ly E)+ a =0
F) e (7 T T A “

. W =
- , - a, =J
PY o g PTT e T T A p T e T
n o ___ e
so p == 0 mod q, or gqjp s
{

Bud p and ¢ are relatively prims, so pl’1 and ¢ are re-
. n , 2>
latively prime; yet q!p . Thus ¢ =1 and = = p €Z. whence
7 C Iy
zx ¢ < Z.

so Z, (N ¢ = Z.

ged
Note that ZK has the icentity, and in fact 1s an integral

. ‘v
domain (because K is). So it can reasonably e asked, What

o o R - . ¢
ie the fraction field of ZK?‘



r B o 1 .
Temma 15 If o€ X then there exists s ¥ 0 ¢Z such that
5o & Z,

K
Proofs A ¢ K implies that & is algebraic over # i.e. there

Pe * & o '
a ao,al, R an_l

€ ¢ such tha

;N s~ | s ,
X ‘*"‘Q.y,_lo( +4¢-g+o~l TQOZO
But ay € lmplles ajy = 0, ees, S :;%ﬁ:l , where all sj,
CO L - ._a‘q -
- 4 , =4
I‘iéZ, Sif Qs Lev
n-{
—— \ —_ ey _t
4 S-‘ SO Si 7 e o 51’«"( — n S‘_(l & fio
A=0
Evaluate the minimal polynocmial of & at & and multiply through
s N
oy st
v n ~ 1 n-1i . il " —
sT "+ $Ma,, A .. +Sa, o + Sta, =0
( “ Lo . BN n- i . "
So) + S, (5 + L+ St (S) 4 S, =0
n-31 . . . -
gnd (s a%) e v Ay 0<i&n. Thus so€CLy, where s &/, s
qed
§om¢hﬁ¥1: The fracticn field of Z_  is exactly X.
B = T‘jx\.’ ~ e i
Proof: Byﬂlemma , 1f o€ K, then there exists S & #.,
and @ € Zx such that X=-3 . Dut s is &2, also, so < 1s
A
1n the field of fractions of Z_, for all « &KX . On ‘the othe

<

nend, since Zx & K, the

Conseguently the fraction fieldfand

Detfinition: A ring K 1s sald

fraction fielc of Zy is certainly

4

oF

are identicals

\

to be integrally closed in a

ring S if the set of all elements of S that are integral over

R R itself.

is

= v Hy
Lemma ty:

Z'/‘
K

is integrally closed in its fractlon field K.
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Proof: It must be shown that if % €K is integral over Z,
—————e »

fi.6o if

+ ...t A+ B, =0

where ¥, € Zx then G € £k, This equation states that «",
and consequently all higner powers of o can be expressed
linearly in terms of 1, A, eo., ? ', with sums of products

of powers cf the ¥, as cogiflciente. But each Kié-ZK; thus

CR A A

T S A U PR

. L
Foe Some ey

o 3 j B S N P q .
ﬁfna the rj ¢ 7. Trus all powers of ¥ can be expressed linear-
: a, ,\,'W‘,\{—k

1y in terms of 1, 04, «oe, G4 with coefficients in Z; snd all

products of powers of §i can be expressed linearly in terms of

e

croducts of the 1, Yo, eoep §17° )with.coefficients in Ze

o
thess products. Call them ,.>£; )_“é<§P . Multiply each
of the ¢ by 1, &K, K, vee, and 471 . Then &ll powers of &
¢ in terms ol the procducts J% © Ay
together with 1, &, <., 271 with coefficients in Z. ‘Since
7 is Xoetherian, lemma 0 applies, and € Zy.
ged .
lote that if & EZ%Q then o 1s algebralc over ZK; conse-
ia K .

quently Zx = gall algebralc integer%Q:?icX6f<10kis algebralc

7.2
over éK)'



One of the three premises Ior the theorem has been

established, that of integral closure of ZK in X. The next

tesk is to show that as g module over [, Zy is finltely
genersted; i.e. that there exist «,,...,d, & Lg such that

[

or any z ¢ Zy

where my € Z. Thalks willgive Fhot 2 s Mecrherianm -
Definition: An integral bhasis for K is any minimal set of
generators § &, «.. %,] for Zy as & thro module
¢ e LM X .
/ L : Y . I . O S
Fhat awery @lemoni oF Ty Lol Le Saprestaica
o fiwewm TGan LoMa “,*'/”/J e s “"' he i Loy C’Jh;;'}s .
¥ has an integral vaslsg, then ZK is a finitely
generatad module over Zs
Lemma /5: An integral basis ror X is & basis for XK. (as a ‘

L]
s
o

s
p
[0}

()]
te

imensional vector space ower €.),

Procf: Suppose that 26;,H;>@ngis an integral baslis and «e K.

ty

By lemma !Z there is v#0 ’c}#_ such that rd C‘ZK Thus

q -
for sultable by & fﬁ

b , 4 . -
where —£ € ¥. So the 9, generate K. Are they linearly
r

|,_ Jo
v3
o
®
g
o©
i
Qu
w
ja
<t
9
w
©
2
“
(o]
in
o

o —f—/\e_ HE N o s afa Tors

for ¢;e . Multiply throuzh by the cvelewst ¢ mmonpmu[ﬁﬁ/a;&g
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; . - o s
where S e & 7

By definition of integral basis, &, = O for all i. Thus all

]

¢y = 0, and the @/ are linearly incependent over .

ged
Corollary: The nuamber of elementz in an:s o integral
taslis ig the degree of K over .
Lefinition: Let 6 € § a field exﬁension of ¢, and let &
be algebraic over §. Then ¢(&), the smallest Cileld containing

both & and & is called a simple alzebralc extension of .

It is clear thet (&) conslszte of all quotilents £(8)/g(@),

gl) Gy ..., 9”“‘} form a basis for (&) as a vector space
over W, where n is the dimension of {(6) over ¢.

Proof: Suppose cﬁétﬁfé); then & = £(8)/g(8), g(0) # 0. Let
p(x) be the (irreducible) minimal polynowmial for & over .
Then p(x)Tg(x),,for otherwise g(8)=0; thus p(x) anc g(x)

re relatively prime. Thil

6]

mnezns that there exlst polynomials

s{x) and t(x) such that

t(x}ep(x) + s(x)-aglx)= 1

t(8)-p(8) T s(0)-2(8) = 1

So X = f(8)/g(9) = £(8)-s(9)
or say. A = h(8)
Now h(x) = q(x)-p(x) + r(x) where r(x) = 0 or deg r(x)<

deg p(x) == n.



But then

=

But deg(r(x) -r'(x})) < n, and

nation of gl, Dy ovoe,

The following lemma 1s not essential to

A—K =

&

been uniquely expressed as a

-17
on=1?

it simplifies some proofs.

iT: Kis =

It is sufficie

k # 1, the equation:
AL
ne

(6), =

nt

lgebralc extension where o« and € are algebralc over

onle S a

over { respectively; say A=<, , @ *

By 7 G .

s at most one solution in .

a(&)-ple) + r(©)

given <, r(9) is unigue.

(e)— v (8)

© satisfles no polynomigl of

It follows thet r(x) and r'!'(x) are identical.

linear combi-
with coefficlents in .
ged

thie paper, but

simple algebraic exbension of ¢
to prove that K = (%,8) is a simple

~ .
W LaCo

lgebraic over . Then use in-

Aiyveey Ap, Giyece, Bp Do the distinct conjusates of

=6 .

\

Note

Therefore, for all 1, anc all

+ XP = A TXE

Since there are only a finite



number of such ecuatlons,; choose an element ¢ in ¥, where ¢

is not a solution; i.e.
A -‘,—C’,@& ’;74 0«.“"(:(3

A; # (arcf) -y

for all k¥ # 1, for alli. Let €= (4 + ¢c@), and show that
. ) Certainly ¢(8) & #(x.08). , :
(o) = Y(x,6) /\lu cu¥ K ees to/sh W)that K and § are in ¢(9)

because then Y(X,8 ) S ¢(H), But if B e {(H), then d= (8 - cf)
€ ¢(0) also, so it will suffice to show that G c¥(e).

Let £(x) and g(x) be the minimal polynomials for « ana 8 re-
specﬁively over Y. (& -cg) = r(«)=

O, so ¢ also satisfies

(@ - ¢cx) = 0. g(x) and 7(® - cx) have only one root, @ ,

c -
F O Sowme 4

] . Fal -, S Ly aenag S = r—-’,ﬁ,., F . .
in common for otherwise, ;=0 - <5 for some k # 1, contrary to

g(x) and £{9 - cx) are also polvnomials over ¥(9), with

the one root @ in common. Let h{(x) # O be the minimal poly-

nomizl for @ over ¢(9). Then h(x)}g(x) and h(x);f(@ - cx)
i
+he \
oyAcovo;lury teo, lerma 1. But this means that h(x) is of

degree at most 1, since g(x) snd f£(® - cx) have only one

root in common: £o n(x)= ¥Ux+d, where X)cr € ¢(2)Y. Thus
v —_— P . Y . )
g+8=0 or @ =— 27 ¢ R(). q

Temmna (¢; If © is algebraic over ¢, then so 1s every element

©
o

Proci: I 9 1

(4]

algebraic over % then {1, 6, ..., oR1{ is

(0) as a vector spsce over ¥, by lemma {6 Tnus
“(®) is a finitely generatcd vector space, and every olement
therein is algebraic over by the remsrk followi the defl-

. Y] . "
nition of algebraice

£
[¢]
()]



If the flelc © 1s a Ifinite extencion of the fielc I,
end I 1s a finite extension of the field X, then £ is

Ly
Y

- . . & X :
finite extenslion of X. Consecuently the degree over { of

any element & ¢ X divides n=

e
¥

P~
5%

, < i @l for, let F o= ¢(«);
then deg & = {}{(d) : %]

Lerma !4: If © ces
1 k3

every element of ¢ (e
Proof: %(@1) is s (sizples) finite algebraic extension of ¢
and Q{@l@9) is 2 finite extension of %(91). The remarks

above give that {(e,,9,

}e

snd continue. Obtaln #(S., ..o, ©.) 1s finite over . So
7o 17 9 /

every element of %(@1, eve, © Jis algel

n'/ <
ged
Lerma 20: The totality of elements zlgebralc over forms a

field.
Proof:  Say «,@ are algebraic over ¥. It must be shown that
A+E, X @, AR, ?ﬁg ,  {where @# 0) are algebraic over #.
But the field ¥(«,@) contalns these 4 eléments. The ?%ezeJéug
gives that the 4 elemente are zlgebraic
over ¥%.
ged
lote that the totality of elements algebraic ovaer ¢ is

not s finite extension of Y. For suppose the fleld, call it
ntl

T, were of degree n over . DBut the polynomiasl (x -22)
ig irreducible over T by ensteint's criterion; yet the

Eis
e +1 . > + . .
algebraic number Ql/n l, which satisfies x© 1. =3, 1is of

-

degree n +1 over T, a contradiction.



Note that &g(@) : %} is the same ac the degree of ©
over Y. Also note that every {inite extension K. of ¢ can
be constructed by adjoining a single element 9, algebraic

a2,

over AL = Z(8).

Lemma 213 If « satisfies the egquation

AnX" A o R A, = O

where the & are algebraic over ¢, then K is algebralc over

%.’\NU‘TQ This s a7 Tae Loy a g l2 va n llfé)
procf: Let L = ¥(%, o, -, % be a finlte extension of 4.
A is algebraic over £, o E(®) ig = finite extenslon of =.

L

gebraic cover

ct
o

i
L
P anty
@
=
o
o

Qo

Cefinition: Lef finite extension of (¢ of degree

n, and let « ¢ K

v.
v
6]
ot

N

(puaranteed by lemma [¢& ;5 let ©y, ..., @h be the distinct

conjugates of 9 over (/; then the elements

<

oy = v(&) , L= 1y eeay N

are called tne conjugages of & for Z(8).

Note that the conjugstes ofcﬁ@ for #(8) are X, &, , :Ba,...
oy Bn 8nd the conjugates of &+0 for {(8) are o, +(0.y KL ¥fa, <
An ¥ @wﬁ, Pl cxv(ﬁf&iazﬂ: VECIIRRCTING S cumtes DooohoTno Lo sl

el oo oomLwides e . E
Le the deqgree o¥ & e g
Lemma 22: (1) 4 The conjugates of & for %(8) are the distinct




if and only if all conjugates of K for ¥ (©) are the same;

(111) () = ¢(9) if and only if all the conjugates of X for

Then f(x) is left unchanged by any permutation of the &,

s the came 1s true of the ¢oefficisnts of £(x); consequent-
1y 2all the coefficlents of f(x) are symmetric polyromials in
» <

the @i' Lemma © pives that the coefficlients are In 4. OQbserve

that £(«() = £(r(9)) = 0., ILet gl{x) be the minimal polynomlal

where g(x) and h(x) are relatively prime. Show that hix)
is a constant, whence h(x} = 1, since both g(x) and fix) are
‘monic.

S‘,.f\)OSC_ .
A h(x) .rs: not constant; then it must ‘have some

r(@i} s a root, il.2. n(rix)) = O when x 1s one of the . .
Let p(x) be the minimel polynomial Lor ®,and hence, for all

the ©;. Then p(x))h(r(x)), so - all @i satisefy hir(x)), in

particuler, © does:

h(x) = h (r(e)=

But gl(¢)= 0. This is impossible by covoliz o0 lemma £,
whence h{x) = 1.
Thug f(x “‘ig X ] . ‘he roots of f(x) are the con-

jugates of X for ¢, and they are evident 1y the roots of g(x),



~
\;

[N

repeated s btilmes. The roots ol g{x) are the distinct con-
jugates of % . ‘Ihe degree of f{x) is n, and the degree of
g(x) is m. Thus s = n/n.

(11): If & € ¢/, then g(x) = x -, m=1, s=n, £(x)=
[é(xi}n = (% - «)7, Conversely, if all the conjugates
are the sawme, then f(x) = {x -4 )™, s=n, m=1, g(x)=x -~ ¢

= 0, where Q€¥, s0o «=0 (:%()
(1i1): Since n=sem, oOr
DAY I v DR B SV D A
(%(5) :y«/.:f = [w(-::) AN R FACVR 3P

then #(9) = #(«) if and only if ¢=1. e=1 implies that
£{x) = gi{x), so the conjugates of K are the distinct conju-
gates. If the conjugates are distinet, then s =1,

ged
Cefinition: If(x) in the above lemma is called the fizld
polynomisl for X over H(2).

Suppose X = {(®) is of degree

n over ¥, and

Gy, eney%y 18 & basls; let toe conjugates of -%Xj for K be denoted
an ey (g . ~ ;

by R Rt IR tren the ¢isgcriminant of the getl

Ay, cosy, %y 1lg defined by

A Eo(l) ¢ v oy O(H_‘.i = 1 O{j
|
(1)), e
where aj is the determinant
VY ()
al ag * L] [ ] an
8.,_(3-) a ) e e @ a @)
o-L 02 en
*(n) > () ® (w)
- a a
a3 2 n




Z3%:  Suppose )

<

Z(9) as’a vector space

d\)un'J 3(,13 :)ﬁé

bases for K=

over ¥, where =
< 6
E%_cjk<{i, k=1l,..., n. Then
’ i S
— A' [ \'
éﬁl[@i>' ceyBal TGy e ye o Hnad
Proof: It suffices to show that
(:H : ¢\ . ] \ /W ) (\)\
/Q oo e ¥ \\ /“11 ©2177 %01 &, Ao Ky
f o) () o) 3 &y ()
1/ (‘\?7\ @k e ¢ © Q“ f { 012 022..°Cn2 ,} o ‘ d_l o(l » o o CD‘;(V\
o v | . © @ ¢ a
: v o 'J - ° @ o J \ ® ¢
° ° : ° v < e “"’2) pb\)
(5\-0 @S)’ ¢ ° \Gf’:) \C C o s 0O \NE:) O(.:‘ oo O<V\/
A In "2n nn i
5*.‘\‘(& the dete pjimant o o v Frix 15 The Sawme wsg  that
¢F oty trawmsspose, ) ‘ i
Consider any transformation on XK= (), w: K—> ¢
defined for 211§ ¢ K by
, — 00D
G (y)= ¥
(Since 211 the conjugates of elements of K might nct lie in
K, ¢ mignt not e an automorphlsm of ¥.) Since each element
nas only one 1th conjugate, anda by the remark immediately
following the definition of Yconjugate", 0, 1s a homomorphism
of Ko Since X is a fleld and ¥, is not the O-map, Gy 1s =sn iso-
morphism,.
Now it is given that @kzclku,+.ug-ronkcg1. Operate on
this equation with T}
Lo ar
J,.,C k“)_qu(»._mw ‘f';. .'f’cNk ‘)‘f.}
Gk = <Cu<“1 T T Gy X )
; ()
= Cpp %+ ot Gak A
SN «)
- . . V2 e - - L) =,
since ¥ ig an isomorphisa, and for cjkc Z, 5% =C 5k (lemma =22,

(11)).

Thls gives the lemma.

$ 8 e, 8.3 are two
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COI’Ollar’i: It K :%(q> and C‘;)($>K\(§'GK and for 21l x « K,

the ith conjugate of x is xfi), then

<)

S N A

T

Proof: G, , in the lemmaA;s an ilsomorphisa; the corollary
follows. |

ged
Lemwas, 24: The discriminant of any basls for ¢(9) is in &,
and is never O. If ©'and the conjugates of © are real, tren
the dlscriminant of any basis is positlve.
proof: If ¢/(9) is of degree n over W, by lemma 16, a par-
ticular basis for ¢(€) is {1, (&), oov, (@3ni1} It follows

Trom the preceding corollary that for this basis

NG N
(9 ) ’ - (6)(“> ¢
Therefore
pe)y=A[21, 8, ..., 7]
1 &
- A 6= O b 1’\

1 e®, . . (eyn-i

{

o ° ©

pt e
@
X
<
©

. . (emyn-l

This'Vendermonde determinate 1s knownvto nhave the value
—_ <}y (& N
D(@) — ’ﬂ"(@ JJ__ 6L))
i<

Thus D(9) 74 0, since the conjugates of (9) for g(8) are
distinet. Since interchanglng any two rows of a matrilx

does not alter its determinate, D(@)is symmetric in the {e(*%’m

/



Then lemma & gives that D(6) & .
IT all the (@)(l) are real, L(O) is positive, because

every factor 1s squared.
¢ed

Lewmns 2%: If AKye-.«, %y 1 any basis. of K consisting only

of (algebraic) integers, then Al ,--¢; 4] 1s a rational

2djoin them %o K to get a K-extenslion, L= K(«, . q,')
(=) Cin 3) . B
voiAn ), %n A L le finite over K and hence over #. Tren

since each of these conjugates satisfies 1ts minimal poly-

nomial with coefficients in 2, they are sall in Z.. Since
e
Zg, is 2 ring, the discriminant
2
(i)
— — N (o) G)
A“A[dn)"‘)dhj Oy Az . e e HAn
@ (22 (=)
{ O(.l ¢ 3 e a(v\
4 L4 Ll
¢ - ¢
[
(] ) ()
«, a0 L &t
iz in 2. Lemma 8 gives that & € ¢, So by lemma /%,

qed
Temnn zé: K has an integral basls.

Proof: K = ¢/(9) for some © algebralc over d. Consider all

vases for K that consist entirely of integers (1, 8, «..,

is such & basis). By lemma 2&, the discriminants of such bas

(&)
[
w

are in Z. Therefore choose one, §0h> T E , where
ilﬁ(édj)" oy L) yzcﬂ ie & minimum. By lemma 2%, &% 0.
Show that $CJiy:+ey .} ic an integral basis forX.

Suppose that it is not. Then there exists an integer



W e 7 hat
) Z‘K suchh tha

C{): Q,Q)l‘f'ocn‘*"a'nwn

where the ai are all rational but not all rational inteugral

{this is poscible since &, ,+c«, Wau§ is at any rate a basis
& b}
for K.) Say that a. is not a rational integer. Then a,= Db+
l ﬁ (9] 1 3
re
b is a2 rational integer)/\and O0<r< 1. DLefine

/
C‘)( - (&1"' b)&/’g‘{' &kaﬁ'wwo‘f an (A’Jy)
= U=} L,
14

Gy = g,
Ir

o PR 7T - AT 7 . 3 A — w T
then [w)’) . .. w, ] = Alty, »+¢, Wy ] Since det A = (al D)
/ ; / £y » g B o '3 R N .
=r#0, ZL«J; R Ld,,’} is a basis for X, and A is the matrix

. o Q / -
of the change of basis. iloreover Zw, y e v, Wy consists
entirely of integers.

By lemma 28 then
A["’L}‘lj"’;)wq/}: rzA[Cdl)a‘onh]

DAY K2 A QL{])<i )ZXL@U,,..,, cwa]

Trhis contradicts the minimallty of d; so zéd. R w»‘g is
an integral basls

ged
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Thus Z, is a finitely generated Z-module.

Lemma 273 Z, is Noetherian.
'S
Proof: Lemma “ gives that ACC holds for sub-Z-nodules cf Z

K
Any ideal of Z, l1s & sub-Z-module of ZK’ and so 1s finltely
1 of Z_ then there exis

<r

generated over Z; i.e. if A is on i1dea

ct

elements y-.c, Fn in hat every element G in A can
e represented as

G': Zld\ \f‘fo.-'-‘i' ZV\O{&

where the zitszo But the z_ are also in Z ; thus the 1deal
i
A is generated by the elements ofi, <+ 4w and the lemma is

proved.

°

i
L



s
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Iv

The third condition that ZK csatlisfies is that 1ts prime

ideal and meximal ideals are in fact the szme. This 1s now

demonstrated. First 1t is shown that every element of Z _ can

i

L ) elemen % ]
be factored into a product of prime:;- (nco necessarily uni-
Py A .

quely).

Definition: Let A be an 1desl of a ring ® and A= (0),

Lo . » 2 o P e P~
A ¥ H; then A 1s a prime ideal of R if for all «,8€R s=such

i

that de@ € R, elther o« el or Qe K.

Definition: 1In & ring K, if &3¢ R, & divides 3 (x|f )
Al ',
@ @,l(?/, o M T
. . . . « . , . | T
it V& eR; B is a unit if ﬁ\l, K 1is a DIlmGA}i K is not O or
a unit, and if any factorization = QK‘ into integers implles
" . . 0oL - . . R
elther @ or ¥ is a unit, "Prime element s oFten abbreviatekd
e ”'PT'{'ﬂde,”

Definition: If & is an integer in ¥, and &, =, dy,--%n are

et 4

the n conjugates of « , then the norm of « , denoted by N(),
is N(aA) & A\ Apee e K o

Lemma 2% ¢ N(&A) is a rational integer.

Proof: Let f{x) be the field polynomial for « . Since f(x)
ie a power of the minimal polynomlal, f(x) has coefficlents

in ° Thus

$Cx) = X" v @, XN 4 AT G

= (K- ) (x=a) o oo (X= o0 ) g

where ay is in Z. Observe that

a,. = (--'i.)n

0
Az (-1)P age 2

o(.o.sao(y‘

ged



Lemma 29: N(d@) = N(q}«N(@)-
Proof: If d,, ey Ay and @,,-++, Bu are the conjugates of «
and @ respectively, thedr the conjugates of o« are % fisc.c,XaB..

fhis glves the lermma.

0
o
[0}

- s . s o - P
Lemms 20 : X is s unit in K if and only if N{a)= Z 1,

—

Proof: K 1s a unlt 1f and only if 451. If d\;l, then

N(d)!N(l) = 1, so N(a) = £1l. If H{«)= T 1, then Kso-cAnil

Lemma &1 3 If N(AKk) is prime in %, then K is prime in X.

Proof: If 4=F & , then () = H(B)«N(Y¥), so either N (@)

or N(¥) is =& 1, since I(K) is prime. This means that either

@ or ¥ is & unit in X.

o
>

Lemuia -t Rvery element of Zy, not O or z unit can be fac-

tored into a product of primes (not necessarily uniquely).

Proci: OSuppose the lemma 1s false, and %¢Z _, & 1s not ¢

<

prime, a:unit, or a finite product of primes. Then =G ¢ ,
bl - - . { - /

where & (or ¥) has the same property. Thus g=¢ ¥ "wnere

: oy \ 2 Rt

G (or¥’) has the same property. ¢ —-G ¥'etec. Thus an as-

conding chain of 1deals is constructed:
(K) € (@) E@IE - -

. {
The inclusions are proper, because none of goh BB e are
assoclated, by their construction. So here 1s a neverending
strictly ascending chain, which 1s impossible, and the lemua

is true.

qed



The product of two ideals A and B in a ring R 1s usually
defined to be the smallest ideal containing all products

q>@ where ol¢A, G<&B.It follows immedlately that 1if A =

gq‘]"‘)qhg) B:‘E@K)"‘-’)@v\}) tl’len f&B:go{‘\g-‘)l.-‘O("@\;)ec“
KB § for all i, j.
Definition: For i1deals 4 and B in Zy, A i1s a factor of B

C kAL

(written A[B), if an ideal C of Z, existe such that 3 = 4-C.
A 1is called a divisor of B if 4 =2B.
Note the distinction between a I'actor and & divisor.
It follows from the definition thazt a factor is & divisor.
It will be shown snortly that « divisor 1s a factor.

—
=

%3: pan ideal P of Ty different from (O) or (1),1s

maximsl if and only if it is prime.

LSura
Pradidsiiiet

Proof: It is well-known that all maximal i1deals are prime.

-

Therefore it suffices %o show that a prime ideal P is maxiral.
Let P= (oy+-v, s ) & P', P FP'. Show that P'= (1).
Let &« ¢ PV, °ﬂ% P’y Then all powers<ﬂjof K are in P'.
Let §i, -, Wy§ be an integral basis for K. ILet g e p.
Theéiiﬁ(@)é 3;j§° P contains a posltive rational iInteger c.

Every integer in K can be wrltten in the form
§ = éi ALCKQ
L=
where the d4€ Z. Each dy can be wriltten

di=-qic+x&,

where qq, r’e‘Z, Of£r,«c, 141i%4n. Thus for all i, v, can

1

only assume c different values. Therefore

-



L5 4
= clzqWlv 2w
<= N iz
T Y * > ey
R G
where 7 < 2 i«
In particular
§ . <
= RPN N S
O( C bJ ey "'\j' \'A')L v

my,

Yhus, for all powsrsd'of o, d“‘CKj can only assume a finite
number of different values. This means there exist two

rational integers k:and k, ¥ >k, such that

. PR .

k

N
AT—K” =&~ ¥.) is in P, since ¢ is in F. Therefore

k- & PR . : | K-} .
-1]) 1g in 2, waich weans elther o™ or o ;l\ ie in P

since P 1s prime. But o&\could not be in P because then o ¢ P

D‘.L‘ (A

(since P is prime), contradicting the cholce of A . Thus
-h
abbh_ep

-l . 4 . .
are in P'. So qk'h—(q“vlt)=iﬁlp and P' = (1). This means

Ty

/ 3
P’. But all powers of <, and in particular o~ h

P is maximal.
qed

From this lemma 1t is seen that the terms "prime ideal”

o]

reable in Z2...
' K

The three cconditions have now been established. Before

and maximal ideal" are interchan
' )

A RV R S N
LI LT N e el



(1) ACC 1s valid in an H-woduls M, and (i11) every sub-module

of M hes a finlte basis.

Lermma Sy Let R be a lcetherian ring; integrally closed
in its fraction field S, and beS; then b € R if o on o

all powers P o b may be zepresented by fractions of & with

thie s=ame denominators ¢ from K.
as a Fractien

Proof: Suppose all powers bR of b are expressible with The

Seme. denominator ¢; then
R = g o) e )
=/ | . T
= / bi‘y;wo Cr oo . , L

Lk

-

. N ) -1l .

for all h, with T and ¢ elements of Ke Then ¢ “& 3, so
A iy . .:{\/: gere rated -1

that all powers of b are in the finite, K-module (c™ 7). By

lemma {0, b is Integral over R. Since R is integrally closed

£ & A3
in >, then b ¢R,

gec

Thecrem: (Dedekind). Let the ring R satisfy the following

three propertlies: (1) R is Noetherian, (ii) prime ideéls
and maximal ideals are the same, (1il1) R is integrally closed
in 1ts quotient fleld S; then every idesl of R, not (0)

or K, can be represemsted uniquely (except for order) as a

of prime ideals of R.

rrocduct P1P2 oo Pn

The proof requires more lemmas. Thrgughout assume thie

three conditlions of the theorewm hold for the ring R.



Lemma 3% ; For every ideal A of K there exlst prime idesale

Pl, oo, Pn Of' R Such that A S Pi fOI‘ 811. i, al’ld

P1P2 oo o PngA-

Proof: Suppose A = (Ayy.oo, o, ). If A is a prime 1deal, the
lemma 1s true; if not then there sxist B, ¥ € R such that

. ' /
@-T e a, yet 8, TFa.

Let B = ( KAyy...

L
S
(]
~—t
tv]
o]
(o)
(@]
fl

(e ye o vy Sy )

Then A &€ B, A £C, and BC £ A. If B and C are prize the lemma

& ! 7

i

3]

t—z
I
o)
Q,
o
[—Jo
0
o
o]
ct
e
H
[
i3
()
~
H
[
e}
[¢]
o
ct

true; if either(or botﬁgof
the process with the one, say 2, (or both) that i1s not prime
obtalning two 1deal divisors D, E of B such that B divides
their product D-E. (Do the same with ¢ if C is not prime).
If D and/or E is not orime, fepeat the process and continue.
Note that at each stage, the new ideals obtéined adlvide 4

(eege D2B2A and E2224). Thus a serles of ascendin
<O

chaing is formed

5 I K L ¥ N 0
N/ N/ N/ N/
D ho F G
N S N
B C

But K -ls Noetherian, so all the ascending chains nust
stop after a finite number of stages. This means that at the
final sfages all the ideais are maximal, aﬁd hence prime.
Kach one divides 4, yet theirp product is in A. Thie gives

the lenma.

s
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Lema "3+ : If P 1s & prime ideal in R, and 4,B are two ideals

-

sueh that AR = P, yet Af/ P, then B £ p.

Proof: Say B4+ P. Then there exist X & A, @ € B such that
, /. ) o e s

oy (3 § P. DBut A3 ¢P. This is impossible. 4164

Definition: I ‘.,AA:/“{:{Og Is an ideal in R and S is the guo-

-

tient fleld of K, designate by a the totality of elements

@ € s, whers BF € R for all ¢ Aj Q need not be in K.

- . X =1
Leona 27 Let P be & prime ideal in R; then P containe

an element not in R.

Proof: Let c 7—1 O €P. By lemma 35, there 1s s finite product

of primes Py «en P, such that Pl .o Pr S (c). Assuwne this

product 1s Iirredundant, i.e. there is no shorter product of

+hen
):-_r;)\ one of the Pi < P

by the preceding lemma. Say Py & Pe BHub since P ;«éR, and P

P; in (¢). Since (c) & P, Py ..o Pré P

1
is maximal, Py =P. Thus

PPy -.. P & (c),
P2 ce e Pr %l (c),‘ so there is b e P2 oo Pr such that
o & (¢). stPP2 ces P S (c), so bP £ (¢); i.e. for allWeEP,
bT € (¢) & R. Thus c}b*;r , or 7(v/c) € K, for all weP. This
means (b/c) C—'P-‘l_.
But notlce that b,ceR, yet b %(c). Thus c’ﬁb in R;
ivee b/c.;;fER._ (b/c) then is the required element.

ged

Definition: Let R be an integral domain, R & S, its qﬁotient
-ly gewserated '

field; if M £ 8 is = finitéAR-module, vhere the module pro-

duct 1s deflned as the ordinary product in S, then W is called

a fracticnal ideal of R.



(&3}
©

Note that M is

a

ancd only 1f M is an ideal OFf R.

Lemma 3¢ 3

fractional ideal of

H, and ¥ R if

1 s Let re i Lo rin R & S,1ts quotient
fleld; let H be a non-empty subset of S; then H 1s a frac-

tional ideal of K 1f and only if there ex

™

be& S such thet bHE is an icdeal in K.

g

roof:..If I 1s a fractionzl ideal, then

ists an element

; r
E=R_1-,..+rxn,
1 n
) . ) T r.
for some generators _; » wsey, “0 in S. ILet Db %.Sl cee S o
Sl S”l n
Then )
bH :(_RI':LS.Z~ .«.51”),5;{}:&/7&5,?\2,.,' ‘)N>~¢— . ~{-—(]Zs,sz ,,v—NB
, :(I' TN S et S <
2 N Y- Tl DN (I PR T
wd S ] ¥ = > D
where the r¥A6 Re S0 DHE is an idesl in R.
Conversely if b ¢ S, and bH is an ideal of R, then

bH =erlﬂ—...-ern, for some ry; ¢ R. Therefore
I3 :'R-rlﬁ-...4~a.rn’
-y g{-’:Na‘iPan‘Gd‘
and H 1s & finlte,R module in S,
ged
Lemwa $%: If Leoe acetoovlen ring, R £8, the quotient
field of R, and A 1s a non-éero ideal of R, then AL s

fractional ideal of K.

<

- -1
Proof: R £ A l, so A~ 1s

not empty, If
a - b GA-;,aand if r ¢ R, then ra e A”L,

over R.

-

2

a,b €A, then

Thus A'l is an

N
i

odule
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Let @ ¢ A, d #0, and let

B = gda,l’a € A'lé“.

Then B 1is non-empty and B £ R Ly definition of A"l It

by, by, € B, then bl = daj, by = da, and bl- bg = d(al-ag) € B,

2 YT

¥or a; < H .
If r ¢ R, then rby = d(ral) € L. Thus B is an ideal of R.
But A T = (1/Q)B, and 1/d € S. So lemma 3% cives that AL

%)
L)

s a fraectional ideal.
ged

Oy

Lefinition: If K, S are rings, R.ES, and if U, V are two
R . W\o<’u/€ .
it modules 1n S, then the iaAX procduct UeV is defined as the
_ I\

smellest module In 8§ containing all products u-v, where

u 6¢U and v € V; i.e. U’-V /s all finlte sums of products of

the form u V.

Thus 1If U= (oiyeney <><n‘); V=1(8,., Bu) are finitely
generated K-modules in 8, then UsV = (85 ooy Xy, ooy (3»»)3
wihere 1L 1 <£n, 1< j<m. lote this definition is consistent
with the definition for the product of ideals (an ideal being

a speclal moduls).

Lerma YO0 : 1If P i1s a prime ideal in R, and S is the quotient
field of R, then P-P~ L= E.

Proof: R SP7Y, so P =Rr.p € P P. PPl is an ideal of R,

gince 1t 1s in K, and 1t is an R-module, =0 since P is maxlmal,
pp~L = p or PP-]': R. Show that PP l=1p 1g impossible.

Suppose PP~ = P. Then P(P'l)z = (PP'l)P‘l:: P,

- -1 h =1y
PP 183 =P, ..... Saya¥ 0 €P, b e P"L, Tnen av® e p(p~l)E
=P, for all powers b or b. So ¢y = abh € R. ‘Thus every
power b® of b can be represented as a fraction ch/a with the

seme demominator a. Lemma 3% gives b € R. This is true for
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all b € P'l, contradicting lemms 37.
Thus PP~) = P is impoesible, end PP~L =R,
. , ged
Lemma %/{: Every ideal A in R, where A'74(O), A'¢§R, is a

product of prime ideals.

Proof: Let S be the ?potient

L)

ie1d of R. Suprose Ar¢ R,
A F (D). By lemma 3%, there are prime ldeas Pis voos P,
such that their product is in 4, yet P, =2 A, for all 1.

Again choose r as small as possible. Let P De an arbiirary

prime ideal contalning A (the existence of P is guaranteed Dby

— - - > N j’;o'h ’
lemma 35. Thus Pl coe E},E P, and lemma 3¢ gives that,some |,
Py £ P. Hence Py = P since P, is maximal. Say P{= P. Then

-1 c 5=l
PT7PPy eevPp = P A

n e o=1
P2 QQQPr-——P p.

1

APTT is an ideal in R, since pp™L € R and A € P; tivc

1t 1s an R-module bedause it is the product of two R-modules

1 ie an 1deal

in 8 an R-module in K is an ldeal ef R. &o AP
in & containing & product of less than r prime ideals. Now
Lse induction on r, and assume the lemma i1s valld for all
ideals of R contalning a product of fewer than r prime.ideals.
sote that the lemma 1ls true for ideals containing exsctly

-1
one prime (maximal)ideal. Thus the lemma holds for AP ~:

qed -
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Lerma A, B are ideals in R, where A < B; say

A =Py «c. P B =Py" «.s Pg' , where the idesals P, and

1
Pi' are prime; then every prime i1deal that occurs in the

r°

representation of B occurs in the representation of 4, and

at least as often.

Prcof: P,'2 3 2 A, so Py' includes one of the P;, say Py,

and so=2P2,; as before: P,! = P,. Dut a £ B, =o

1 1
-1, — .
Pl A 4.2 * e @ Pr
-1 _
Pl B"_sz * ¢0 PS' L

Using induction on s, assume the theorem is true for

;dta/s
any ideal represented by a product of t prime:A t

(Note that the lemms 1s true for s = O; then B ::R> Thus
each of the ideals Pg', ..., P
at least as often ag among the P_', ... PS'. The lemma

2 4 ’
follows immedlately.

ged
Corollury | : The theorem.
Proof: Let A=B in the preceding lemasa.

qed.

Corollary Z : A divisor is a factor.

Proof: If A £ B, then A = BC, where C 1s the product of
those prime ideals of A left over, when those of B are

stricken. |
Corollary & : Any ideal in Z

K
duct of prime 1ldeals, unique except for order.

where t < s.

g' occurs among the Py, «.., P

can be represented as a pro-

r
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VI

There are a few Interesting applications of this theo-
rem that follow cguite reacdily. For completeness 1t should
T o 'ul'}\.:-“r‘

be notecd that the converse;Ayith a slightly more stringent

condition, is also true.

wow - trivial
Let R be an integral domain, wherse everyAideal can

Lemma %23
be represented uniquely as- a product of prime ideals; fur-

54 ppose ' . V :
thermore 'x: Ior ideals,AA.g B, then A = B+C for some 1deal C;
then (1) R is Noetherian, (ii) prime ideals are maximal,

and (iii1) R 1s integrélly closed in its quotient field S.

Proof: (1) follows:.  directly since every ideal A =:Plb1...

P S0 pzs only finitely many divisors Py 2 P 'n, wher
Py nas only finitely many divisors Py"+ ... P °1, ere

£y é-si. In particular a prime ideal P has only ? and K as
divisors, implying that P is meximal; so (11) is satisfled.

For (i1i), let 2 €S and ) be integral over i of degree m
#cz Then by the definition, Xmis expressible linearly in terms
of X Nyeve, A" 1.6, A"is in the R-module L =( 27, A,. cy A7)
If A= a/b, where a, t ¢ R, L may be transformed into an ldeal

-1
of R by multiplying by the ideal B = (b ). Note trat

L2:: L. Then

2 2

(LEXLE) = L°B® = LB® = (LB)B,

ané the uniqueness implles

L = B.
Multiply both sides by the R-module (b“(m'l)@, obtaining
L =R. Then VELE R, and (1i1) Ls satisfied. ge i
| Representations as products of primes of the two ideals

AN Band A+ B in ZK are qulte simple due to the theorem.
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s _.B on, . k K
Detinition: If A= Py Teee P, B Py 1 ... P.T , are
two arbitrary ideals in Zp (hi’ k, may = O, in which case

h k
Pi 1 or Pi 1 15 defined as Pio = (1) = ZK); then the greatest

A
common divisor (A,B), of A and B is
common Clvisor

(4,8)= 271 ... pFr

where: ,n;:min(hi, ki); the least common multiple, [A, B] s

ls

(4, 8] = "1 oo.opfr

vhere m. = max(h X,)e.
lere m, (n,, k)

The greatest coumon divisor 1s sbbreviated GCD; the least

comaon multiple is abbreviated LCM. Note that D is the GCU
of A and B if and only if DiA, Di{B, and for every other
divisor B of A and B, E{D. Similarly, M is the LCM of &
and B i1f and only if A\M, BsIvI, and for every other multiple
F of 4 and B, M|{F (U is a multiple of V if V{U).

Lemma %Y : If A and B are ideals in ZK’ then A+ B = (A,B)

and &£ N8 = [A,B] .

Proof: Clearly A + B2 A and A+ B2 B, éo by corollary
2 of lemma 92, (A 7 8)1}; and (A + B)\B. Further if E|A
and E|B, then E2 A and E2 B, so E2 A + B and E[(4+ B).
So A+ B = (A,B), the GCD.

On the other hand note that both A and B contain A N B
so Al4aN B and 3la 0 B. Purther, if A\E and BSE, then both
A and B include E, so A 0\ B 2E; this implies 4 N B|E. so
A NB ie the ICU: [A,B].

qed



Hotice that 1if A= (o, ,rve, dn ) and B = (Giy--vy Bud)
then

1L"+ B: (O’\l‘)lvﬂ)o\’y\>(j-‘-"»()(3rv‘)

Ar\B :(X()"“> \G/K>)

where the §; are those elements of ZK that are generatorsnof

both A and B. Thus, using the above lemma, the exact gener-
ators of both the GCL and LCM of A4 and B can be found.
The following lemmz verifies any speculatlon trat the

~set of fractlonsl ideals of ZK might be a groupe.

e SUIIEEE
S L

,. N
( Lemms Y5 :) The non-zerc fractional ideals of Z, form an

abelian group under the operation of ths product of modules.

Proof: Certaeinly the product of two fractional ideals 1s

-

a2 frgctional ideal. ‘he identity 1s ZK-::(l). Given an ideal

let a™% = py7tp, "l oo B "E. certainly

is a fractional ideal, and lemma 90 gives that A

A :Ple LR Pn,

AT =

A y
Z.. = (1). Commutativity and assoclativity hold in the group
1S ,
gince they hold in X.
ged

It is known that every 1ldeal in ZY is finitely-generated.
fhe Tollowing lémma shows that every ideal is in fact generated
by st most two elements. ‘
' A+(0) & w/gl )
Lemma %6 : IfvAcand;Diare;ideals in ZK;ADQ;:(Oﬂg?ande'érD,

then there is an element d € D such that the GCD (4,(d))= D.

Proof: Let A =P hy eee P hr, D =P K1 ... »p Kp , where
EESL L2 1 r 1 r
0£k,£h,. d must be chosen so that D|(d), but (d) bhas no

further divisors in common with A,(i.e. so that

(a) = Plkl Prkr"B = DB
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for some ideal B & D where (4,B) 22(1». Let

+1 Ketl
C = Plk‘+l"'ooo Pr v »

and

— K+l 5 K 4l
Ci‘*P ¢ . & 9 I)ii L Y Prr

’._J

L]

== CvP“-l
1

Then C < C., &L, so for all i, there is an element di ¢ Cy,
out 4y # oo Thus lay), so P2 \(a,) and g, ¢ p MM for

J# 1; also Pikﬁl)/‘ /5 Bl

l(oi), 80 di j2 Pi . The sum

d: d.{;;\"oookjd C‘-D
- by

since di ¢ U for all 1i; thus D is a factor of (d). 5ut (a)

has no further in common with 4, since

k+1
a; & 2y

3 /é Pik“d-

s0 P LS is not a factor of (d): but if A had a further factor

1
in common with (d), Piki@Euld be a factor of (d). Thus the

and

greatest common factor, or GCD; of A and (d) is D.
| ged

Corollary: Every ideal L in ZK ie generéted by at mosf
two elements, (a, d), where a may be picked arbitrarily in L.
Procf: 1In the lemma let A be (a), where a is vicked arbitra-
rily in D. Then D is the GCD of () and (d); D= ((a),(d))
— (a, 4). . ged

It has been shown that ZK is in general, not a UFD.

However, ZK is a UFD on occasion, and it will now be shown
I



that in this case ZY 1s 2 principal idesal domain (PID).
: A
Preliminary lemmsas are required.

Lesa 47: 1If

Ll

5 _.;,J‘ At Cro

£(x)= Sw X

is in Zo %], S F O, and T 1is cne of its roots, then every
coelficlent of f(x)/(x - ) has coefficients in'ZK (T may

or may not‘be in ZK).
Proof: & Te Zy by lemus 14, because i1t satisfies the equs -
tion

glx) = x# +’5;-gxm‘l+'6;-20L«)<m—l ...

.. +<§! C§’Mm—-l/\/ -+ cro Owax—i :O

-1 — , .
(g(&MTT):idkwi “f(n)——O)a the lemma is certainly true forp
m = 1; suppose the lemma true for all £(x) of degree < n.

Since

P (x)=£(x) - J, x" +d. x
= £(x) = dn X" (x=-T)

1s of degree < m, and ¢6{}Z%9) the polynomial

yﬁ(X)/(}(--n-) :{(X)/(}(.—TO —_ JM X’W\—-)

hias coefficients in ZK’ So £(x)/(x - 1) has coefficients

Corollary: If f(x) is the polynomial of the lewmna, ond
f(x) = a,m(X’T{:) LI (><-_-~ TT.M>)

then d,, ﬂl,"anyffzK for any ¥ < m, where §i,, ..., ik%

§§§, ey, mE .
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Proof: By successive applications of the lemma,

-~ Y i - R - wi - li.‘) . e ¢ <X~_~n—j‘
X =W,y % ST | »
hes coefficlents in Zy. Cu T, .. T is the last coefficlent.

ged
Ine following is a generalization of Gauss' lemma
(lemma = ).

Lenma 49 Let

p(x) = L X0 + . X +
a(x) = G X" * o FEX + G,

berpolynomials with coefficients in ZK’ dPQrzﬁo. et
I‘(.X)::p()()oq(x): XSXS+"“+X{X+‘60

If § & 2z such that all Y/feqy, then all o (/€ 2.

Proof; Suppose -

P(X)= &, (X-T) . « . (X~ Tp)
a{x)= @« (x—a;) s v . (X‘O‘r)

r(;.)__ = 'Sig;&c (X=T) .- - (X=Tp)(X=01)+ - (x=0F)

has coefficients in:ZK. The preceding corollary gives that

every product

dcgﬁ . -
d" Z-";""L‘%O-"‘!."'O—mj

is in ZK. But di/&P and %j/@r are the elementary symmetric



functions in the TL and 0 respectively, so

J
B A T (R VR <Y,
J d °<q1 @\"

is a sum of terms of the for:. Xp8e T
n

. d "“7’_“1?0—”‘1"'07"'0
Thus o, @J /1} € ZZK

ged
Lemma ¥9: For every ideal A of ZK’ there 1s an ideal B
and a rational integer a such that AB = (a).

Proof: ILet 4 = (,..., %, ) and define

(x) = & x + .+ A

4) . . ‘ o
where o; ', 1 =1, ..., n, are the n conjugates of o; for K

(K =@(8) is of degree n over #; © 1s algebraic over ¢). Let

o = L or = b
I(X) = g;l(X) © e bn(X) Zcpx .
Show that the coefficients of F(x) are in Lo

f all the conjugates of each %y are not in'K, Adjoin

r r Id ; (a) (.
them to K, obtaining a K-extension I, = K( O,\‘m) 1 PR “"O(J ‘),
o,(’h-i)

e Sa Ofvf“)),L ig finlte over X and hence over /. Each of
these A, then sstisfies ite minimal polynomisal (with coef-
Tficients in Z), so they are all in ZL. The coefficients
of F(x) are sams of products of the wf“, g0, since ZL .is a
ring, the coefficients are in Qe
Lefine a mapping o0;: L{xl— ¢[x] : ir £(x)= QuX . B X+
¢ L[x) , then |

2 - ' Ca) (a)
ru(ba0) = BTKT 4 B G

By the remarks preceding lemma 22, &7 1s a homomorphism. If

~

T (5D = O



2 () . . @) o . -
then ©4 =0, for all 1. But tren G; is in &, so that all
of its conjugates are the game, nzmely O. In particular,
§i=0, and go f(x) = 0. Thus the kernel of 02 is (0), and 6 is

an lsomorpnism. By lemma 2Z(i:

iy 0o (f{x))= f£(x) Lif and
only if f(x) € %{K}

Notice that
galgix}) = Smced* ),

@here the mapping vgl, oo, g}->§l, ce ey, n} is a permutation)
since ccnjugacy is an equivalence relation. 4All &gy x)

are distinct, for otherwise

7

&

Galglx)) = Tulg(x))

for some 1 % k, which 1is impossible, since €. 1s one to ocne.

Thus

P (x)) = gy (x) «on g (x))
= 0uley(x) ... 2l (%))
= B (X)) eee Byp(x)
= F(x) .

lhus F(x} ¢ ¢ {x}, and the coefficients of F(x) are in
4. DBut they are also in-ZL,’so by lemma {2, they are in Z.
If g1(x) is the polynomial having the original o as

coeificients, then glﬁ§))F(x}, arnd

h(X) = gﬁ](hy'}{‘) = gg\(x) LI gn(X)



A

has coefiiciente in ZK" Lo L ool O clenng o eomre Ty

;o Let hix)= G X +. .40 X", et a te the GCU (in Z) of

Cp, the coeilicients of F(x), .0 that F(x)/a is primitive.

By

Lefine B-:(@(>'«o)@»f)and show that AB = (a).

3

Since F(x) = W{X)ogl(x)) alqigj for all 1 and j, by

v
the preceding lemma. Thus (&) 2 4B. On the other hand,
since @ is the GLL of the cp, the rational integers cp/a
are relatively prime. ‘‘hus there exist ratioral integers

xp‘such that

R

But each s is, by the definition of the By's, of the form

_(‘)J

.Z /\’:JF .O<xl gi

Y

SO a is of the form

SO a ¢ AB, and (a) = AB. |

ged

i)

Lemmz = U ZK 1s a UFD if and only if Z _ is a PID.

Y

Proof: It is well known that any PID is a UFL. Tt sust be

shown that i1f ZK ls a UL, then every ideal is princiﬁal.
Lt surfices to show that every prime idesl P;}'&! is principal,
due to the theorem. |

The preceding lemma guarantees that P (a) for some
rational Integer a. Let a=1,...Tr be the UF of a in Z,.
Then (a) = FWJ.-J(TRO S0 P)(ﬁ), for some prime element

of By, By corollary Z. of lemma 42, (W)= PA, for some idesl



A of Zy. lNotice that () £ 4. The corollary to lemmna &¢

says P and A can be written

P =(T, ¥), A =(T,5)

b4

and ‘ ‘
(W) = Pa = (T, ¥) (T d)

= (TTZ ) TTX) TJ) Q,/’Or\>

Thus  ¥d" € (7), or 'ﬂw ¥$. UF in Zy provides ﬂw ¥ or 7T\d:
Show Tf{ o‘r\.

It Td, then a4 = (T, d) = (M, o (W) = p

L A = F(7) and
5‘/ Je‘?;A'rT/D/\/ o5 [)rzme ,{Q o
{

{

P = (1) = Zy. inis is inpossibles Thus W]d, T Y | and P
= (WY ) = (M, and P is principal. ‘Thus every idezl of Zy

is principal and Zy is a PID. (Netice +hat A =(P.)
qed
¥inally, a specific example will - ~. be exhibited of an
ideal in ZK represented as a product of prime ldeals. ILet

{ = ¢({10), and Zx =7 WIO]. Every element « ¢ K is of the form
A = (a + bNIO)/c, a,b,ceZ, ¢ # 0

Since W(V10) is of degree = 2 over &, every element
of %({ia) satlsfies a monlc quadratic polynomisl over W

~d

a}b’c c29

. . a
In particular, if QCE%({EB), K= (a + b‘\)lO)/c,A

then & satisfiles

flx)= x° - (2a/c)x + (a° - 1Ob2)/c2 = 0,
Since ¢(110) & Z} fx) = C can be solved for x, using the

quadratic formulsa:

Cx = <2a/c * V4a2/c2 - 4(a2 - 10b2)/7>%




= (1/e)(a *\e® < a2 +1002)
= (& * bV10)/c

e)*.*/ze r

Thus the ,conjugate: of (a + 18)/c 1s (a - b\10)/c, and the

norm N(«) of « is;:
/ \
(a'i' BV10) ¢ 3)/

= (a® - 10b2)/c~

I

I (A)

It is possible that in this case, ZK ::ZYYTBJ mlzht be

a UFD. Doubts are quickly dispelled on observing
6 = 2:3 = {4 +{10)- (¢ -VID).

All five of these elements sre in ¢ (VID). But 1t must be
shown that 2, 3, 4 {10, and 4 - ViD are prime in order to
show that UF does not hold. Notice that N(2) = 4, 1(3) =9

QO
—_— Aot
H(4 $VI0) = 6, so 2y 3, 4t VIS are units. If sy of these

2

are not prime, then there exist in ZI¥10] elements d»Q , not

unlts, sueh that Af=2, x¢=3, or «f=4 *{I0. But then N(X) N(Q)= 7,
o NEW(g) = 6,

N{G v (Q)= ?/\ fince o and @ ars not units, N (o)#

N(@)# * 1. Thus, by UF in Z,

H+

M) =22 or N(w)= 3

N(p)= X2 or N(g)= 2 3,

But are there any elements at all of Z[QlOthosa norus
are L2 or *3%., That it to s&y, are there .rational integers

& and b such that one of the following holds

a® - 1002 =2, a2 - 1002 = -

a? - 1002 = 3, 42 - 1002= -z o
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Map the elements in these equations into the ring Z/&OZ by

the natural homomorphism of Z m»?g/&oz. Then the equations

become
a® - 100°% =2, & -~ 1008= 3 =8
af - 106° =3, &% - 10p2= 3 =7
or
82 = 2, a® = 8, a® = 3, af= 7

But‘there are no elements of Z/&OZ whose square is 2, 3, 7,
or 8. Thus no elements oo ZI}T@]have norms 1 2 or 3, and
the elements 2, 3, 4 4 V10 are prime. Nobte boo-that since :
the norms:ofi2.and’'3 are differént . from the. norms  of 4% (f@,
nelther. 2 nori 3.are associated with either.of 4 V10 (= is
assoclatec with b, if and only if 2 = be, where ¢ is a unit).
The element © therefore has been factored in two essentlally
different ways into products of primes, and UF does not hold
in )Z[(f@] .
However, 1t will now be shown that the ideal (&) is a

product of prime 1ldeals; namely

= o 2.
(6) Pl Pgﬁgﬂ

where Py = (2, Y10), P, = (3, 4 +V10), Pz = (3, 4 - V10),

and Py, P,, Pz are all prilme ideals.
First the equality. P,% = (4, 2110, 10). Tnus 2% = (2),

since 2[4, 2|21, and 2/10; also 10 - 2(4) = 2. PPy =
(9, 12 - 3V10, 12+ 3YI0, 6). P5Pz = (3) since 3 divides
the four generators of P2P3; also ¢ - 6= 3, where 9 and & are
in PoPz. Thus (6) =?(2)(3):= P1P1P2P5'



Are Py, Po and Pz prime? For P1, 1t 1s evident that
pep,, if Q= 2a + [10b, end a, b €. Conversaely, let §

be any element of Pl Then

d= 206++0 Y.

where X,) 3 GZ{QIO}- Let Ki =cq % V 1Odl’
¥, = s + 10d2. Then

d = 2(cy+ (10a;)+ V10 (eg+ VI04,)

= 2(ey + 5d5)+ Y10 (2d] + FOP

2(01 t+ Sdl) is &n even rational integer; so Pl consists
precisely of elewments of the form 2s <+ mb, where a, b ¢ 7,
i.e. elements whose raticnal term is even.

To show that Pl is prime,then, it must be shown that if
i\ ¢n £Py, then ¢ G 4 P,. But @, )G’;\% P, implies
that the rational terms orf (3, and ()’Lare odd; so ithe rational
term of (fais odd, and @ @afP,. Thus P, is prime.

For Py, let § = a+{10b ¢ 2z[I0] . snow Fery if

n

snd only if 3‘\(& +b).
Swppose
s that a + b =3k, a = 3k - b. Then

B==a +{10b= 3(x +b) — (4 - vI0)b.
But 3 and 4 - {10 are the generators of Py, 80 ger

"3
Conversely, suppose § € Py. Then

§ = 3(ay + {1003) + (4 - {10) (ay+ v 10b,)

= (3a, + 4ay - 10b,) + JI0(3b; - a, + 4b

2
If §=a + {10b, then notice trat 3 )(a + b).

2)°

Now if @ =a ﬁ’ébl, and Qa=a, + \)10‘02, and

Q1€1=:a ~¥Afi6b, then a = a8y + 10b,b., Db =fai;b2‘+ b

172 1824
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and a + b = (al-+b1)(agﬁ—b2) +—9b1b2.

only if 3}(al—kbl)(azﬁ-b2). If neither G\nor anre in PS’

Thus 5](8 -+ b) if end

then 3 divides neither (al-fbl) ner (az—%bz). Thus
51Yalﬁ-bl)(agﬂ-b2) and 311a~+b)n Hence @;galﬂks, and P6
is prime. '

The proof that P2 is prime goes through in a similar
fashion, noting that ¢§=a = b{10 € P_ if and only 1if

2
5{(a = b). Thus (6) 5=P1P1P2P5 where Pi are prime ideals.
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