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I. INTRODUCTION.

Electronic tools having advanced so far in reliability and
ease, the JN course cannot be justified today on practical
grounds. The naval academy was right to discard celestial
navigation as a required course. Even when done well, it yields
only approximate results. As one letter-writer to the New York
Times said it last year, the most useful function of a sextant
and a slide rule aboard a lifeboat today is as paddles.

Power squadron members study celestial navigation for a
different reason. We appreciate the history of inquiry and the
beauty of the celestial sphere. We sail among the stars to sense
connections with our environment and our past.

But do we study well? Chapter 9 of the JN manual describes
the NASR method for solving the navigational triangle. Page 9-1
assures members that the NASR table, based on spherical trigonom-
etry, does the "higher" math for you in computing a celestial
line of position. Page 9-5 counsels not to worry about mastering
the mathematics underlying the tables. Again, the sailings
taught in chapters 15-17 are for impractical rhumb-line courses.

This is unsatisfying and obstructive. It does not do to
stifle the natural curiosity of sailors, especially where just
high school mathematic notions are involved.

The following assumes only that you know

* 4 of the 6 basic trigonometric functions of plane geo-
metry, the sine, cosine, tangent, and cotangent,

* the sine of the complement of an angle is the cosine
of the angle and vice-versa, and

* the tangent of the complement of an angle is the
cotangent of the angle and vice-versa,

which are reviewed for convenience in the last section. Assuming
as navigators do that the earth is a sphere, this paper will show
the geometric relations of the Mercator chart, the navigational
triangle, and great circle courses. We will also prove geometric
methods of sight reduction and greéat circle sailings accessible
to a general audience.

In the process will be shown the solution to any spherical
triangle given any 3 of the six parts (3 angles, 3 sides), except
if given only 3 angles. The latter can be solved using polar
triangles, a slightly more nuanced topic which will not be shown
here.



One problem I have not yet run to ground yet, as will be
seen, is the construction of the auxiliary table to the NASR
reduction method on pages 316-17 of the Almanac. That is only a
footnote though, because the methods developed here obviate the
need for that table.

Aesthetically I prefer trig tables and a slide rule for
computation. These were the tools of Bowditch and Napier. Like
the practical midshipmen though, most people use easy and ac-
curate electronic calculators. The choice is the reader's.

IT. MERCATOR CHARTS

Chapter 13 of the JN manual explains the concept of Merca-
tor charts, without explaining the simple formula they are based
on. The distance d between two meridians along a parallel at
latitude L is given by:

d=es cos L
where e = the distance between the two meridians at the equator.

Why? Consider the following side-view figure of the earth with
radius r sliced vertically along a meridian:

The point A is at latitude L, so L = Zy. The length of the

equator -- the circumference -- is 2nr. Because its radius is (r
* cos L), the length of the circular parallel that goes through A
all the way around the earth is 2n(r * cos L). . the ratio of

the length of this parallel to the equator is

2nr/2n(r ¢ cos L)
= 1/(ces L).

Now, as explained with figures 13-3 to 13-6 of the JN manual, the
Mercator chart is constructed by expanding both the latitude and
longitude by the same factor. The above demonstrates, that this
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factor is just 1/(cos L). Otherwise stated, multiply the equato-
rial distance by cos L and you have the distance along the
parallel.

For example, at L = 60°N, cos L = %. . on the globe, the
distance between two meridians along the 60°N parallel is half
the distance between the same two meridians along the equator.

ITI. THE NAVIGATIONAL TRIANGLE

A great circle is defined as the intersection of a sphere
and a plane that passes through the center. Any two different
planes through the center - intersect in a diameter; their
corresponding great circles accordingly intersect at the end-
points 180° apart. That is, any two great circles bisect each
other.

A spherical triangle is a triangle on a sphere formed by
great circles. Thus, meridians are great circles, and parallels
of latitude generally are not.

Consider the two figures reproduced below. The left one is
the navigational triangle of figure 9-4 on page 9-4 of the JN
manual. The right one is a spherical triangle with right angle
C, taken from Seymour & Smith, "Solid Geometry" (MacMillan Co,
New York, 1943), page 191.

The left figure shows the navigational spherical triangle
divided into two right spherical triangles marked as "I" and
"II . 1"




The right figure is cleaner and easier to work with. So,

re-letter the sides and angles of triangle I on the left to match
those of the right figure.

90° » /C
LLHA - /A
Co-L =~ c

A= a
B~ Db
£Z, » [/B.

The problem of determining A, B, and /2%, in the left figure
reduces to solving for a, b, and /B, given /A and c¢ in the right

figure. We do this using Napier's rules ## 1, 2, and 6, devel-
oped below.

Similarly, the sides and angles of triangle I1 can be re-
lettered:

90° » /C
A~ D
Co-F = Co-(B + dec) = a
LZ, = [A
{Co-P ~ /B
Co-alt = c.

The problem of determining Co-alt and /Z, in the left
figure reduces to solving for ¢ and /A in the right figure, given

a and b. We do this using Napier's rules ## 5 and 2, developed
below.

Iv. NAPIER'S RULES.

Napier discovered 10 lovely rules for solving right spheri-
cal triangles with right angle C and sides < 180°:

1: sin a = sin ¢ ¢ sin /A 6: sin b = sin c ¢ sgin /B
2: tan b = tan ¢ *» cos /A 7: tan a = tan ¢ * cos /B
3: tan a = sin b ¢ tan /A 8: tan b = sin a ¢ tan /B
4: cos /A = sin /B s cos a 9: cos /B = sin /A s cos b
5: COsS C = Ccos a * cos b 10: cos c = cot ZA ¢ cot /B.

These are nice because a lot of the spherical triangles encoun-
tered in navigation are right. The triangle of a great circle
course, the meridian of a point on the course, and the equator is
right, as are triangles I and II of the NASR sight reduction
method. We also use rule # 5 to prove the law of ccsines.



We will prove four of Napier's rules here, ## 1, 2, 5, and
6. Consider first the case where all sides < 90°. Construct
plane triangle DEF in the right figure above as explained below.
We will then show that DEF is a right triangle with /F = 90°,
{DEF = /A, and all the faces of tetrahedron ODEF being right
triangles.

Let O be the center of the earth with radii OA, OB, and OC.
Through D, any point on OB, pass plane DEF at right angles to OA.
DE and EF are both perpendicular to OA by definition. By conven-
tion, a spherical angle is measured by any plane angle of its
dihedral angle. In other words, by definition, /DEF is the

measure of dihedral /B-OA-C which in turn measures /A, and /DEF =
ZA.

Plane COA 1is perpendicular to both planes BOC and DEF,
since /C = 90° and DEF was constructed to be so. 5o DF is
perpendicular to plane COA, as well as to segments CF and FE.

all 4 face triangles of tetrahedron ODEF arc right
triangles. But the 3 face angles radiating from O respectively =
sides a, b, and ¢ of spherical triangle ABC. That means the
various ratios of the sides of this tetrahedron yield the trigo-
nometric functions of the sides of ABC. E.g. sin a = DF/0D, tan
b = EF/OE, etc.

Napier's rules ## 1, 2, 6, and 5 are now derived. Suppose
OD = 1. Then

DF
DE ¢ sin /DEF
sin ¢ ¢ sin /A.

sin a

This is rule 1. For rule 2:
tan b EF/OE
(EF/ED) + (OE/ED)
(cos /[A)+(cot c)
tan c ¢ cos ZA.

Rule 6 follows by the same process as rule 1 except instead of
constructing plane triangle DEF through OB perpendicular to OA
with one of its angles = /A, construct a plane triangle through
OA perpendicular to OB with one of its angles = /B. Result:

sin b = sin ¢ * gin /B.

cos ¢ OE
OF » cos b

CoOs a * cos b.

o
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It can be seen by inspection that sides A, Co-., and Co-H
in the navigational triangle all < 90°. . their cosines are all
positive. Applying rule # 5 to right triangles I ard II in the
navigational triangle = the cosines of B and Co-F must also be
positive, so they too < 90°. Confirming this, the NASR tables
only allow values < 90° of all the sides of triangles I and II.

So for reducing sights Napier's rules need not be proved
for triangles with sides exceeding 90°. But the law of cosines,
proved below, is used by navigators for other purpcses such as
determining long great circle distances. So for completeness we
will prove the rules for these triangles with sides up to 180°.

The following diagram, taken from page 192 of Seymour &
Smith, is used to prove the rules where a > 90°, ¢ > 90°, and b <
90°. The diagram is a little confusing, but I can't draw and it
is the only model I have. The point F should be shown a little
to the right of where it is shown because both /DFO and /DFE turn
out to be right angles.

Anyway, the proofs above for rules ## 1, 2, 6, and 5 all work
using this diagram, once it is noted that

/ DEF = 180° - /A
/ DOF = 180° - ¢
/ DOF = 180° - a
/. EOF = b

and the following identities are recalled for all x:

sin x = sin (180° - x)
cos x = - cos (180° - x)
tan x = - tan (180° - x).

The next diagram, taken from Shapiro, "Mathematics Encyclo-
pedia" (Doubleday & Co, Garden City, 1977), page 188, is useful
to show the rules in triangle ABC, where /C = 90°, a > 90°, b >
90°, and c < 90°. Since intersecting great circles bisect each
other, note that:



180° - a’ /BAC
180° - b’ /ABC

a
b

180° - /BAC’
180° - /ABC’

All 10 of Napier's rules will have been proved as to triangle
ABC' by the end of this paper. Substituting via the identities
for a’ and b’ in the 10 formulas for triangle ABC’ yields the same
10 formulas for triangle ABC.

Inspection of this diagram will also satisfy the reader
there are no right spherical triangles with all 3 sides a > 90°.

As for a triangle with 2 sides = 90°, inspection will show
the sides opposite them also = 90°. With the excertion of the
formulas involving tan 90°, which are nonsense, Napier's rules

become trivial. The same is true for the triangle with all 3
sides = 90°.

V. CONSTRUCTION OF THE NASR TABLES.



These rules can reduce a sight. Thus in triangle I of the
left figure on page 3:

sin A = sin (Co-L) * sin /LHA (rule # 1)
= cos L ¢ sin /LHA.
tan B = tan (Co-L) * cos /LHA (rule # 2)
= cot L * cos /LHA.
sin B = sin (Co-L) * sin /Z1 (rule # 6)
sin /Z, = sin B + sin (Co-L)

sin B + cos L.

In triangle II:

cos (Co-H:) = cos (Co-F) ¢ cos A (rule # 5)
sin H. = sin F ¢ cos A
= sin (B + dec) ¢ cos A.
tan A = tan (Co-H.) * cos /Z, (rule # 2)
cos /Z, = tan A + cot H..

In triangles I and II:
LZ = L7, + [Z5.

Inspection of the NASR tables suggests they were construct-
ed using these formulas.

The tables yield results only for whole degrees of argu-
ments. Corrections are needed for a refined value of H.. The
auxiliary table is used.

I am not clear on the derivation of the auxiliary table
except (referring to the left figure on page 3) to rote that the
responses

corr 1 = AF ¢ sin P
= A(Co-F) * cos (Co-P)
and Corr 2 = AA ¢ CcOS Z,,
where AF, A(Co-F), and aA are the differences between F, Co-F,

and A, and their respectlve nearest whole degrees That is, each
correction is the cosine of an oblique angle in triangle II
multiplied by an increment of its adjacent side.

Perhaps the corrections result from applications of Na-
pier's rule # 2 (tan b = tan c * cos /A) on triangles formed by
dropping perpendiculars from points on sides Co-F and A to side
Co-alt = H..



Or they may consist of approximations derived from plane
right triangles, the first with oblique angle Co-P and adjacent
side Co-F, and the second with oblique angle Z, and adjacent side
A,

I am not sure.

Page 284 of the almanac explains that in any event the
auxiliary table is capable of introducing error in H. of up to
2.

The trigonometric method by contrast is limited only by the
accuracy of your slide rule.

VI. THE LAW OF COSINES

The law of cosines is an even nicer tool, applicable to all
spherical triangles, whether right or not. It holds:

Cos a = cos b * cos ¢ + sin b ¢ sin ¢ * cos /A,
for any three sides a, b, and ¢, and any /A opposite side a.

Recall that the sine of an angle is the cosine of its
complement, and vice-versa, to see that the formulas on page 9-11
are both applications of the law of cosines to the navigational
triangle. As will be seen below the law is also useful to
determine the great circle distance between two points.

First we prove it, and a different but very similar propo-
sition, for right spherical triangles. Then we generalize it to
all spherical triangles.

Consider our friend, the right-hand figure on page 3 above:

cos b * cos c + sin b * sin ¢ + cos /A
OE/OF * OE + EF{OF * DE * EF/DE
(OE)°/OF + (EF)°/OF

((OE)® + (EF)°)/OF

(OF)*/OF

OF

cos a.

{1 I (I

This is the law of cosines for oblique /A. To prove it for
obligue /B, draw the triangle we constructed to prove Napier rule
# 6, and go through the same process. To prove it for right Zc,
since cos 90° = 0, note



cos b ¢ cos a + sin b * sin a * cos /C
cos b * cos a
cos ¢,

/|

by Napier rule # 5.

Similar reasoning leads to a slightly different result,
used below to prove the law of cosines generally:

sin b * cos ¢ - cos b * sin c ¢ cos /A
EF/OF * OE - OE/OF ¢ DE EF/DE

EF » OE/OF + EF *OE/OF

0.

mn

Call this the "zero lemma," for want of something more imagina-
tive.

Now, consider the arbitrary oblique spherical triangle
shown in a figure taken from Seymour & Smith at page 208:

10



First, drop a perpendicular f from /B to side b, as shown forming
two rlght triangles, I and II. Then,

cos b * cos ¢ + sin b * sin ¢ * cos /A A
= Ccos (d + e) * cos c + sin (d + e) * sin c * cos /A.

Using the formulas for the sine and cosine of the sum of 2 angles
developed at the end of this paper, this expression:

(cos d * cos e sin d * sin e) ¢ cos c
+ (sin d ¢ cos e + cos d * sin e) ¢ sin c ¢ cos /A

(cos d * cos e *» cos ¢)

- (sin d * sin e * cos c)

+ (sin d *» cos e ¢ sin c * cos /A)
+ (cos d * sin e * sin ¢ ¢ cos /A)

cos d ((cos e * cos c) + (sin e » sin c * cos ZA))
- sin d ((sin e *» cos ¢c) - (cos e *» sin c * cos ZA)) .

Apply the above-proved law of cosines and the zero lemma to right
triangle I to obtain:

= (cos d * cos f) - (sin d * 0)
= cos d * cos f
= cos a,

the last step following from Napier rule # 5. This is the law of
cosines.

VII. AN EXAMPLE.

This example is taken from Problem 2(b) on page 9-17 of the
JN manual. A sun sight is given with

assumed L = 49°N
/LHA = 65° 18.1’
= 65°
dec = 13° 46.3'N.

Using the power squadron s NASR form and tables, Appendix F
omputes He = 26° 40', 2 = 100.1°, and 2y = 260° Do trigonomet-

ric methods yield the same result° First, u51ng Napier's rules,
the slide rule yields:

11



sin A sin (Co-L) * sin LHA (rule # 1)
cos L * sin LHA

cos 49° * sin 65° 18.1'

(.656) (.91)

.597

36.6°

[/ (S 1 |

tan B tan (Co-L) * cos LHA (rule # 2)
cot L ¢ cos LHA

cot 49° s cos 65° 18.1'

(.871) (.418)

.364

20.0°

| I | T

sin 42, sin B + sin (Co-L) (rule # 6)
sin B + cos L

sin 20.0° + cos 49°

(.342)/(.656)

.522

31.5°

[ T T T | |

L7,
sin H. cos (Co-H.) (rule # 5)
cos (Co-F) * cos A
sin F * cos A
sin (B + 13.8°) ¢ cos A
sin (20.0° + 13.8°) s cos 36.6°
sin 33.8° ¢ cos 36.6°
(.557) (.803)

446
26.5°
26° 30’

[ 1

cos /Z, tan A + tan (Co-H.) (rule # 2)
tan A + cot H.

tan 36.6° + cot 26.5°

(.744)/(2.0)

.372

68.3°

It H

o

[

L2,

L2

(7, + /7,
31.5° + 68.3°
99.8°

L7 260.2°

260° 12'.

Computing the same result with the law of cosines gives for

12



sin H. sin L ¢ sin dec + cos L * cos dec ¢ cos LHA
sin 49° ¢ sin 13° 46.3’

+ cos 49° s cos 13° 46.3' ¢ cos 65° 18.1'
(.755) (.238) + (.656) (.971) (.418)

.1795 + ,2665

.446
Hc 26° 29/,
and for Z:
sin dec = sin L ¢ sin H. + cos L * cos H. * cos Z

sin 13° 46.3' = sin 49° ¢ sin 26° 29’
+ cos 49° e cos 26° 29’ s cos 7

.238 = (.755)(.446) + (.656) (.895) ¢ cos Z
= .337 + .588 * cos 2
-.099 = .588 ¢ cos Z
cos Z = =-(.099)/(.588)
= -.1685
Z = 99° 42’
Zy = 260° 18’.

The results by these methods are quite close to those found
on the NASR form in Appendix F, and I would suggest more ac-
curate. Between/Napier"and the law of cosines, the latter is
faster. ~ - erl g T :

VIII. GREAT CIRCLE SAILINGS

Great circle courses are the shortest. Using trig rules,
great circle sailings are simple. This is so even though great
circle headings constantly change. With a known initial position
and course you can compute any of the following if yvou know the

other two: (1) any other position, (2) the course to it or from
it, and (3) the distance to it. We will start with (2).

A. At any two points the sines of the headings are
inversely proportional to the cosines of the
latitudes.

The following trick tells the navigator where to steer at
any point on the route, knowing only the course at some other
point and the present latitude. It follows from Napier's rule #
4, which was stated above and will now be proved.

13



In the right figure on page 3

OF ¢ sin /B
cos a * sin /B,

cos /A = EF/ED
= (OF ¢ sin b)/sin c.
= OF ¢ (sin c)e*(sin /B)/(sin c) (rule # 6)

which is rule # 4.

So, suppose first you start from A on the equator on a
course that passes through B. Segment AC = b is on the equator.
What should be your heading at point B?

Your latitude L at B is segment BC = a.

Note also that your heading at point B is the vertical
angle of /B, so it = /B.

Extend your course past B to a point, say M, where the
course is nearest the pole, and the latitude reaches its maximum
and begins to diminish. call this latitude L..x- Draw a meridian
from M. The resultant spherical triangle, consisting of segment
AM, the equator, and the meridian, is a spherical triangle with
right angles at each endpoint of the meridian (M and on the
equator), and with one angle = /A.

By rule 4, in that triangle, cos /A = cos L, * sin 90° =
cos Ly.,, sO /(A = L,,. So, still assuming our course began on the

equator, the problem reduces to solving for /B if we know a and
LA.

But also by rule 4, in triangle ABC, cos /A = cos a * sin
{B = cos L,,, so sin /B = (cos L,,) + (cos L), and /Q = {B, which
was to be proved.

14



What if our course began off the equator?

Starting at A on the equator, pick any series of points B,, B,,
B;,... on the course. For each of themnm

cos L., cos a; * sin ZQ,
cos a, * sin /Q,
cos a; * sin /Q,

.7

which was to be proved.

Thus for example, consider the course from St. Augustine to
the Bull Light in chapter 14 of the JN manual. By inspection of
either the gnomonic or Mercator charts, reproduced below, its
maximum latitude IL,.,, = 51° 45’ so sin Liax = .619. Also by inspec-
tion the latitudes of the course at various longitudes are:

L, L
St. Augustine 81° 19’ 29° 54’
80° 31° o0’
70° 38° 10’
60° 42° 25’
50° 47° 15’
40° 49° 40’
30° 51° 10’
20° 51° 42’
Bell Light 10° 18’ 51° 35’

Applying the above formula the true headings Q at each of these
latitudes should be:

15



Gnomonic Projéction: Great Circle Plots as Straight Line

50° . §0° - 50° 40° 30° 20°..

Figure 14-2

Figure 14-3
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t
0

29° 54’ sin /Q = (cos 51° 45')+(cos 29° 54')
= (.619)/(.874)
= /Q = 45°
31° 00’ sin /Q = (cos 51° 45')+(cos 31° 00’)
= (.619)/(.857)
= /Q = 46°
38° 10’ sin /Q = (cos 51° 45')+(cos 38° 10')
= (.619)/(.786)
= /Q = 52°
42° 25’ sin /Q = (cos 51° 45')+(cos 42° 25')
= (.619)/(.739)
= /Q = 57°
47° 15’ sin /Q = (cos 51° 45')+(cos 47° 15')
= (.619)/(.679)
= /Q = 66°
49° 40’ sin /Q = (cos 51° 45')+(cos 49° 40')
= (.619)/(.647)
= /Q = 73°
51° 10’ sin /Q = (cos 51° 45')+(cos 51° 10’)
= (.619)/(.627)
= /Q = 81°
51° 42’ sin /Q = (cos 51° 45')+(cos 51° 42')
= (.619)/(.619)
= /Q = 90°
51° 35’ sin /Q (cos 51° 45')+(cos 51° 35’)

(.619)/(.621)
= /0 96°

Inspection of the gnomonic and Mercator charts corroborates these
headings.

B. At any two points the sines of the DL,s from the
nearest meridian where the course crosses the
equator are directly proportional to the tan-
gents of the latitudes.

First, prove Napier's rule # 3. Returning to the right
figure on page 3:

17



tan a DF/OF
EF/OF * DF/EF

sin b * tan A.

/|

|5/ So for points B; and B, in the great circle figure on page
14,
tan a;, = sin b; * tan ZA
and tan a, = sin b, * tan /A,
so tan a; + sin b; = tan a, + sin b,,
or sin b; + sin b, = tan a, + tan a,.

That is, the sines of the DL,s from the meridian of the nearest
point L,.., where the course crosses the equator are proportional
to the tangents of the latitudes.

If the chart does not show the meridian of I, it can be
located by adding or subtracting 90° from the meridian where the
course latitude = L., and vice-versa.

Does this actually prove out in the sail from St. Augustine
to Bull Light? VYes. First, determine the longitude at the point
where a = L,,. By inspection of NO 17, L., = 51° 45N at L, = 17°
00'W. The near-equivalency of the right column below, reckoned
with a slide rule, verifies the point:

Io DL, L tan L/cos DI,
81° 19’ 63° 19’ 29° 54 (.576)/(.449) = 1.28
80° 00’ 62° 00’ 31° 00 (.601)/(.470) = 1.28
70° 00’ 52° 00’ 38° 10 (.786)/(.616) = 1.27
60° 00’ 42° 00’ 42° 25 (.914)/(.743) = 1.28
50° 00’ 32° 00’ 47° 15 (1.08)/(.85) = 1.27
40° 00’ 22° 00’ 49° 40 (1.18)/(.93) = 1.27
30° 00’ 12° 00’ 51° 10 (1.24)/(.98) = 1.27
20° 00’ 2° 00’ 51° 42 (1.27)/(1.00) = 1.27
10° 18’ 7° 42’ 51° 35 (1.26)/(.99) = 1.26
C. At any two points the cosines of the DL,s from

the meridian of L., are directly proportional to
the tangents of the latitudes.

The same rule holds for the cosines of the DL,s from Lx-
The sine of any angle = the cosine of its complement. So in the
great circle figure on page i3 'the DL, between B, and M is the
complement of the DL, between B, and A. The same is true for B,
By,.... . the previous section also proves that the cosines of

the DLys from B, and B, to M are proportional to the latitudes of
B, and B,.

18



D. Distance to destination.

Page 14-7 of the manual claims the distance from St.
Augustine is 3332 nm. The guickest way to verify this is with
the law of cosines. Applying it yields

cos D = sin L, * sin L, + cos L, *cos L, * cos DI,

= sin 29° 54’ « gin 51° 35’
+ cos 29° 54’ ¢ cos 51° 35’ ¢ cos 71° 01’
= (.498) (.784) + (.867) (.621) (.326)
= .390 + .176
= .566
D = 55° 31’
= 3331 nm.
The next best way is to use the great circle sailing chart,

NO17. The legend explains a plotting method for measuring
distances. Following that I come up with 3328 nm.

A more cumbersome method is to use Napier's rule # 5.
Since latitude is measured from the equator, the rule can only

give you the distance of a point from L.c;or the equator crossing
point.

First, locate L,,,. Using rule # 3, for any two points B,
and B,, whether on the same side of the equator or not,

tan /A = tan a,/sin b,
= tan a,/sin b,.

Since the longitudes are known, DL, is (81° 19') - (10° 18") = 71°
01’, so b, = b; + 71° 01’. So, IL,., not being between B, and B,

tan a,/sin b; = tan a,/sin (b, + 71° 01'),
and you can solve for b,, which then also gives you b,:
tan 29° 54'/sin b; = (tan 51° 35')/sin (b, + 71° 01')
(.575)/sin b, (1.26)/sin (b, + 71° 01')

sin b, (.575)/(1.26) * sin(b; + 71° 01')
(.456) ¢ sin(b;, + 71° 01').

Here, we use the trigonometric identity for the sine of the sum
of two angles shown at the end of this paper:
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sin b,

(.456) o

(sin b, * cos 71° 01’ +

cos b; * sin 71° 01')

(.456)* ((.326) * sin b, + (.946) * cos b,)
.149 sin b; + .432 cos b,

.851 sin b; = .432 cos b;
sin b,/cos b; = .432/.851
tan b, = .507
b, = 26.9°
= 26° 53,

The great circle crosses the equator at L,.., 26° 53’ west of

St. Augustine. By rule # 5, the distance from there to St.
Augustine can now be determined:

COS Cgp Cos a ®* cos b

cos 29° 54’ e cos 26° 53’
(.867) (.892)

.774

39° 18’.

| T I [

Csn

The distance from there to the Bull Light is determined by:

COS Crgp, = COS a ® cos b

= cos 51° 35’ « cos (26° 53’ + 71° 01')
= cos 51° 35" ¢ cos (97° 54')
= (.62)(-.137)
= -.085

Cra. = 94.89°
= 94° 53',

So D = 94° 53’ - 39° 18’

= 55° 35’
= 3335 nm,

pretty close to the results using the law of cosines or NO17.

There is a fourth way to compute distance, and that is to
use the same Napier formulas ## 1, 2, and 5 used to reduce a
sight to H.. That is, form a spherical triangle of the departure
and destination points with the north pole, divide it into 2
right triangles, and solve them one at a time. For clarity, re-
letter triangles I and II as shown in the right figure:
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In triangle I:

sin a

and

tan b

In triangle ITI:

cos d

and

again, pretty close

| 1 I

[T

sin ¢ * sin /DL,

(sin 38° 25')e(sin 71° 01')

(.62) (.946)
.587
35° 557,

tan c * cos /DI,

(tan 38° 25')e(cos 71° 01')

(.794)e(.323)

.256

14° 50°.

(Co-L SA) - b
60° 06’ - 14° 50’
45° 16',

COos a * Cos e

(cos 35° 55')e(cos 45° 16')

(.81)¢(.704)
.57,

55° 15’

3315 nm,

to the first 3 results.

Taking one more example, suppose a long great circle trip

from America to Australia, %

the southern ocean.
in Appendix E are:
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Barnegat Inlet Light

New Jersey Fremantle, Australia
39° 45'N 32° 03's
74° 06'W 115° 45'E
The fourth method just noted -- the one analogous to reduction to
H; -- is not suited to a trip over 180° of circumference; Na-

pier's rules have been proved (1n this paper) only for spherical
trlangles with sides which are minor arcs. We don't have a
gnomonic chart for such a great distance. Let's try the law of
cosines. This is permissible even though the course > 180°

since for any angular distance D, cos D = cos (360° - D).

cos D =cos L, * cos (90° + L,)

+ sin L; * cos (90° + L,) * cos DI,

cos 50° 15’ ¢ cos 122° 03’

+ sin 50° 15’ ¢ sin 122° 03’ ¢ cos 189° 51’
(.639) (-.531) + (.769)(.848) (-.985)

-.339 - .641

-.980

273° 40’ or 266° 20’

16,420 nm or 15,980 nm.

{1 (T |

It is not easy to tell by inspection which of these answers is
correct. But the method of locating the equatorial crossing
point tells us it is the higher figure:

The DL, of the departure and destination (B, and B,) is 189°

51'. Using rule # 3, and noting that IL,., is between B, and B,
Jocate the L, of L

Z2ero :

tan a, + sin b, tan a, + sin b,
tan 39° 45' + sin b; = tan 32° 03’ + sin (189° 51’ - b,)
.832 + sin b, .626 + sin (189° 51’ - b,)

sin b, = .832/.626 * sin (189° 51’ - b,)
= 1.33 ¢ sin (189° 51’ - b.)
= 1.33 ¢ (sin 189° 51’ » cos b,
- cos 189° 51’ s sin b,)
= 1.33 ¢ (- (.171) * cos b,
+ (.985) * sin b,)
= 1.305 sin b, - .227 cos b,
-.305 sin b; = -.227 cos b,
sin b, + cos b; = .227 + .305
tan b; = .744
b, = 36° 40’
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east of Barnegat Light. L,,, is -~ at L, = 37° 26'W. This is also
153° 11’ west of Fremantle. Using rule # 5 the great circle
distance from there to Barnegat Light is

COS Cp, = COS ap, * COS by,
= cos 39° 45’ ¢ cos 36° 40’
= (.769) (.802)
= .616
Cpp, = 52° 00’
= 3120 nm.

The great circle distance from there to Fremantle is

COS ¢y = COS ar * Ccos b;

= cos 153° 11’ * cos 32° 03’
= (-.892) (.848)
= -.756

cr = 220° 53’
= 13,253 nm,

and

C = cCcg + Cp
= 3120 + 13,253
= 16,373 nn.

This is closest to the figure of 16,420 developed with the law of
cosines.

Does this course go only on the ocean? Or does it bump
into South America and Africa? To see that it does not, deter-
mine its latitude when passing by the nearest points in Brazil
and South Africa. These are Cabo Calcanhar Light and the Cape of
Good Hope. By Appendix E the coordinates of Cabo Calcanhar are L
5° 10's and L, 35° 29'W, 1° 57 east of L,,. By rule # 3:

tan 39° 45’ + sin 36° 40’ = tan a., + sin 1° 57’
tan ac; = (.832)(.035)/(.597)

.0487

2° 47',

Qccy,

2° 23’ north of Cabo Calcanhar.

The Cape of Good Hope is at L 34° 20'S, L, 18° 30'E, which
is 55° 56’ east of L,.,,. So,

tan 39° 45’ + sin 36° 37’ = tan a.; + sin 55° 56’
tan acey = (.832)(.828)/(.597)
= 1.152
49° 05',

Acey

well south of the cCape.
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IX. PLANE TRIGONOMETRY REVIEW

A. TheZPytgagorean Theorem: 1In a right triangle c?
= a° + b°.

) 2
. \\\\\
A ,_/Dii e e E__\_,\_A K
4 €

In the figure,

d/b = cos «o f/a = cos B
= b/c = a/c
= b/(d + £) = a/(d + f)
b’ = d(d + f) a® = £(d + f)
= a2 + df = f° + 4df
a® + b’ = @ + 2d4f + £

=(g’l+f)2
= c°.
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B.

functions.

Definitions and graphs of the trigonometric

This figure and table are taken from Gondin and Sohmer,

"Advanced Algebra and Calculus Made Simple"

(Doubleday & Co,

Garden City, 1959), page 17.
sin § = y/r esc § = r/y ! Generalized definitions of the trigonometrie
cos § = z/r secd =r/z functions of any angle § = QOP as in Figure 2
tan § = y/z cotd = z/y and table.
ty
2/(0, r)
] 1
6: = =#—4;) (Angls: 4,)
Pa, b)
!
{
1
{
i
|
1
i
' x
-aa : -
P,/(—r,0) i Q(r, 0)
|
1
|
l
i
|
1
Pa, ~p)
(8 = v+8) P20, =) (6 = 22—3,)
tn H v
Figure 2
TABLE: Typical Values of Trigonometric Functions
Quad’t ; 1 f I j I ; v j
9 0 8, /2 8, = | s 3m/2 |6 | 2x
P Q PPy 2, ‘ Py | B Py J P, Q
(xy) {r.0) (a,b) (0,r) (=a,d) (*nmf(—ﬂ,—b) O =) (@ =b | 0
Sin 8 0 a/r 1 b/r 0| =@/ | =11 =/ 0o~
Cos 8 1 a/r 0 ~{a/7) -1 —(a/r) 0 a/r 1
Tan 6 0 b/a 2 @ —(b/a) 0 b/a + —(b/a) 0
Cot 8 T o a/b 0 —(a/b) T © a/b 0 —(a/b) F
Sec 8 1 r/a F @ —(r/a) —~1 —(r/a) F o r/a 1
Csc 6 T o r/b 1 r/b = o —{(r/b) -1 —(r/b) F
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These graphs are taken from Gondin and Sohmer, page 18.

REFERENCE GRAPHS OF TRIGONOMETRIC FUNCTIONS

\ ] i 5 - { ! H [
\ IH— Cscx. —N‘ l in / nm & wv i !
\ ! i i
\ / ") I W Y A i i /
\ / v /! H AN /
\\ / B \\\J: // J: E \/// y=1
i T I Sl e Nt b DL
e N O, L
_ ~2r -3x/2 —r —r/2 /2 X 3r/2 2 3% 4
J360e  —270° —180°  —80° 90° 180° 270° 360° 450° 540° 630° 720° X
. § : M ~/ § : Sin X \5\_/
- T T : N 7 N g = —1
/ ; :
I/ : // § \ : // \\
/ -2 A A / \
{ i / ! -t Csc x —+ \
! \ ' S R i \
t ! ! [
y=sinx or z==5In"'p: P=CSCx O x=cse “yr — — e
! ] ¥ ' | ) ! {
. Sec x. N r ] nolom A ! i
,' g ) | Vb \
/ \ ’ / i \ ; /I \
i /
__4// \\1 /-/ ; \\ ! {____-_-_-_~_“ Yy = 1 . \\
. e : ; :
€ Cos z e \ : ; |
—2r —3x/2 - —-x/2 -r/2 - 3x/2 2r 3x 4o
—360°  —270°  —180°  —90° 80° 180° 270° "360° 450° 540° 630" 720° 'y
7 1 \ : 'Z COlS x v y= -1
/// \\\ /// § \ i y Vs \\
! \ /A A i f \
- -2 H 1
/ \ [f NS \
{ H ! 1
i ! A i / |
P=C0Sx Or x==COS$ s ——. y==secxz. or x=secly:; ' ———
\ [
\ S O LI AT YR \
\ \ i \ !
\ 2 | \
A i \ \ \
v ' \ \ y=1
/ ‘—\ Cotx 7’4\ \ i /\ /\ \\
—2x —3x/2 — —x/2 '72 . ) 2 \\ 3r \ i
360° —270°\/—130° -9o°\ 9,0"\ 180° 27,0"\ 360° 450° G° 6307 720° X
-1 i \/ i \/L——Tanx—vo \X/y= -1
\ VLo \
\ AR \
' \ R H \ \‘—— Cotx \
\ i \ \
! \ il \ ‘
] ! \ \ |
y=fanz or r=tan-y: y=catx or r=cotly; e —
Figure 3
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C. sin (A * B)

= (Sin A *» Cos B) + (Cos A e« Sin B).

We will prove this for all positive angles < 180°.

Wi AN
1 ) v
- P ik \ oY
9‘: 1\\ " V
2 f w \,Wf e P
Sy PN
e | S kY
_/’/‘\ c ' \\/( §
oA i - X — L
x \l/ y R A _// .
) |
N A / > P
L
\\_L .

In the left figure:

sin A » cos B + cos A * sin B = (y/2) (z + u) + (x/2) (V)

and

y + (uy/z) + (vx/z)

y +

(y/2) (w) (cos ©) + (x/z) (w) (sin @)
Yy + (w/2) (y*cos © + x*sin 0)

Yy + (W/z2)(y°y/z + x*x/z)

y + we(y' + %)/ (2%

vy +w

sin C

sin (A + B)

o

|| I T

sin C* cos A - cos C ¢ sin A = (W + yv)(x/2) - (X)(y/z)

In the right figure:

(wx/z) + (yx/2) - (xy/z)
we (x/2)

wesin ©

we (v/wW)

v

sin B

sin (C - A)

| | I | [ 1
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sin A * cos B + cos A ¢ sin B = (y/z)*e(u - z) + (x/2)*(V)

(uey/2z) + (vex/z) -y

(wecos @) (y/2z)

+ (w ¢ sin ©)e(x/2) - vy

(Ww/z)*(y ®* cos ® + x ¢ sin ®) -y
(w/z)* (yoy/z + x2x/z) -y

we(y” + x°)/(2°) -y

w =Yy

sin C

sin (A + B),

nnnnn

and

sin C* cos A - cos C ¢ gin A = (W = y)(x/2) - (-%x)(y/z)
(wx/z) = (yx/2) + (xy/z)
we(x/2z)

w e* sin ©

we (v/w)

A%

sin B

sin (C - A).

L O 1 N

D. Cos (A £ B) = (Cos A s Cos B) 7 (Sin A
Sin B).

In the same left figure of the previous section:

Cos A ¢ cos B - sin A ¢ sin B = (2/2)(z + u) - (y/2z) (V)
= (2X + ux - vy)/z
=X + (ux/z) - (vy/z)
=X+ (x/2)(0) - (y/2) (V)
= X + u-* sin ©) - v ¢ cos 0)
=X + uv/w - uv/w
= X
= cos C

cos (A + B)

and

cos C ¢ cos A + sin C » sin A = (x)(x/2) + (w + yv)(y/2z)
(X + y° + wy)/z
(2° + wy)/z

Z + we* cos ©
z + w(u/w)

Z + u

cos B

cos (C - A).

| I 1 N | |
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In the right figure:

Cos A * cos B - sin A ¢ sin B = (x/z)*(u - z) - (y/z)e(v)
= (ux/z) - (vy/z) - x
= (u*sin @) - (v * cos @) - x
= u(v/w) - v (u/w) - x
= -x
= cos C

cos (A + B),

and
cos C ¢ cos A + sin C » sin A = (-x)(x/z) - (w - y)(y/z)
= (-X" -y + wy)/z
= (wy - 2%)/z
=w(y/z) - z
= W ® CcCOos © - 2z
= w(u/w) - z
=u -z
= gcos B

cos (C - A).

E. Napier's other rules.

Napier's last 4 rules have not been proved. For complete-
ness, here they are. Rules 7-9 are simply the flip sides of
rules ## 2-4, proved the sane way as rule # 6. As for rule # 10,
by rules ## 4, 5, and 9:

COsS C = cos a * cos b
= cos /A/sin /B * cos /B/sin /A
= cos /A/sin /A s cos /B/sin /B
= cot /A s cot /BR.
F. The law of sines: in any spherical triangle the

sines of the angles are proportional to the
sines of the opposite sides.

In the triangle on page 10,

= gsin f
= sin ¢ * sin A
= sin ¢/sin C.

sin a * sin C

sin a/sin A

2%



If the perpendicular were drawn from a to CB the same process
leads to sin b/sin B = sin ¢/sin C when it is recalled that sin B

= sin (180° - B). This was to be proved.
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